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A MODELS AND TRAINING

For our experiments on the standard unsupervised task we used two different VAE architectures.
The first one is the same found in |Higgins et al.| (2017) and uses a 2-layer MLP as an encoder with
1200 units and ReL.U non-linearity. The decoder is a 3-layer with the same number of units and the
Tanh non-linearity. The second architecture is the one found in |Burgess et al.| (2018)) and consists
of a 3-layer CNN with 32x4x2x 1 convolutions and max pooling, followed by a 2-layer MLP with
256 units in each layer. The decoder is defined to be the transpose of this architecture. ReLU
non-linearity where applied after each layer of the CNN and the MLP for both the encoder and the
decoder. Both models used a Gaussian stochastic layer with 10 units as in the original papers.

We also tested two variants of this last architecture, one found in[Mathieu et al.|(2019) which changes
the shape of the convolution and another with batch normalisation. Neither variant exhibited any
improvements to disentanglement or reconstruction on the full dSprite data and so were not included
in the rest of the experiments.

For the image composition task we used same as in |Burgess et al.| (2018) that we described above.
The latent transformation layer was parameterized as:

hiransformed = Wrcat[zy; action] + Wycat|z,; action]

where z, and z; are the samples from the stochastic layer for reference and transform image, cat
is the concatenation operation performed along the column dimension. The output is another 10-
dimensional vector with the transformed latent code.

Alternatively we also tried a 3 layer MLP with 100 hidden units, but saw no benefit in performance
and decreased disentanglement when trainined on the full dataset.

Training on the unsupervised tasks ran for 100 epochs for dSprites and 65 epochs for Shapes3D,
even though models converged before the end. The learning rate was fixed at 1le — 4 and the batch
size at 64. (3 values used were 1,4, 8,12, 16 on the full dSprite dataset. 5 = 4 and 5 = 16 where
not included in the rest of the experiments since the former offered very little disentanglement and
the latter very large reconstruction error. For the FactorVAE we used v = 20, 50, 100 throughout.
In the composition task the models where trained for 100 epochs with 8 = 1. Using /3 higher than
1 interfered with the model’s ability to solve the task so they where not used.

For the ground-truth decoders (GT Decoder) we used the same MLP decoder of Higgins et al.
(2017) mentioned above. Using deeper decoders with convolutions with/without batch norm after
each layer was also tested, but did not provide significan benefits and also decreased the performance
on some of the conditions.

All the models where implemented in PyTorch (Paszke et al., [2019) and the experiments where
performed using the Ignite and Sacred frameworks (V. Fomin & Tejani, [2020; Klaus Greff et al.|
2017).

To measure disentanglement we used the framework proposed by |[Eastwood & Williams|(2018]) with
a slight modification. The approach consists of predicting each generative factor value, given the
latent representations of the training images using a non-linear model. In our case we used the
LassoCV regression found in the Sklearn library (Pedregosa et al., 2011) with an « coefficient of
0.01 and 5 cross-validation partitions. Deviating from the original proposal, we do not normalize
the inputs to the regression model since we found that this tends to give a lot of weight to dead units
(when measured by their KL divergence). This is likely due to the model “killing” these units during
training after they start with a high KL value, which might not completely erase the information they
carry about a given generative factor.
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Figure 7: Disentanglement analysis for dSprites. The disentanglement analysis results for the
dSprites dataset. a) The scores for each of the metrics evaluated by the DCI framework: disentan-
glement (left), overall disentanglement (middle) and completeness (right) for each of the conditions.
b) The matrices of coefficients computed by the framework plotted as Hinton Diagrams. These are
used to obtain the quantitative scores in the panel above. They offer a qualitative view of how the
model is disentangling. On the left is how perfect disentanglement looks in this framework.
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Figure 8: Reconstructions for the dSprites dataset. For each condition and model, these are some
reconstruction examples for both training and testing. There is general success and failure in the
Recombination to Element (top) and Extrapolation (bottom) conditions, respectively. For this last
condition, the models seem to reproduce the closest instance they have seen, which tranlated to
the middle of the image. For the Recombination to range (middle), the models tend to resort to
generating a blob at the right location, minimising their pixel-level error.

C EXTRA PLOTS FOR THE 3D SHAPES DATASET
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Figure 9: Disentanglement analysis for Shapes3D. The disentanglement analysis results for the 3D
Shapes dataset. a) The scores for each of the metrics evaluated by the DCI framework
2018): disentanglement (left), overall disentanglement (middle) and completeness (right)
for each of the conditions. b) The matrices of coefficients computed by the framework plotted as
Hinton Diagrams. As discussed in the main text, these matrices offer a qualitative view of how the
model is disentangling. In general, sparse matrices indicate higher disentanglement. It is clear from
these diagrams that the degree of disentanglement varies over a broad range for the tested models.
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Figure 10: Reconstructions for the Shapes3D dataset. For each condition and model, these are
some reconstruction examples for both training (left) and testing (right). In each case, the input
image is shown in the left-most column and each subsequent column shows reconstruction by a
different model. The test images always show a combination that was left out during training. All
training images are successfully reproduced. However, reconstruction for test images only succeeds
consistently for the Recombination-to-Element condition (top). All reconstructions fail in the Ex-
trapolation condition (bottom) while most of them fail for the Recombination-to-Range condition
(middle). There are occasional instances in Recombination-to-Range condition that seem to cor-
rectly reconstruct the input image. This seems to happen when the novel combination for color and
shape is closest to the ones the model has experienced during training. For example, models are
better when the oblong shape is paired with cyan (which is close to green, which it has seen) and
worse on magenta.
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