
Psychological Review
Grounding Computational Cognitive Models
Casimir J. H. Ludwig, Erik Stuchlý, and Gaurav Malhotra

Online First Publication, January 6, 2025. https://dx.doi.org/10.1037/rev0000533

CITATION

Ludwig, C. J. H., Stuchlý, E., & Malhotra, G. (2025). Grounding computational cognitive models. 
Psychological Review. Advance online publication. https://dx.doi.org/10.1037/rev0000533 



THEORETICAL NOTE

Grounding Computational Cognitive Models

Casimir J. H. Ludwig1, Erik Stuchlý2, and Gaurav Malhotra3
1 School of Psychological Science, University of Bristol

2 Institute of Psychology, University of Hamburg
3 Department of Psychology, State University of New York at Albany

Cognitive scientists and neuroscientists are increasingly deploying computational models to develop testable
theories of psychological functions and make quantitative predictions about cognition, brain activity, and
behavior. Computational models are used to explain target phenomena such as experimental effects, individual,
and/or population differences. They do so by relating these phenomena to the underlying components of the
model that map onto distinct cognitive mechanisms. These components make up a “cognitive state space,”
where different positions correspond to different cognitive states that produce variation in behavior. We
examine the rationale and practice of such model-based inferences and argue that model-based explanations
typically miss a key ingredient: They fail to explainwhy and how agents occupy specific positions in this space.
A critical insight is that the agent’s position in the state space is not fixed, but that the behavior they produce is
the result of a trajectory. Therefore, we discuss (a) the constraints that limit movement in the state space; (b) the
reasons for moving around at all (i.e., agents’ objectives); and (c) the information and cognitive mechanisms
that guide these movements. We review existing research practices, from experimental design to the model-
based analysis of data, and through simulations we demonstrate some of the inferential pitfalls that arise when
we ignore these dynamics. By bringing the agent’s perspective into sharp focus, we stand to gain better and
more complete explanations of the variation in cognition and behavior over time, between different
environmental conditions, and between different populations or individuals.

Keywords: computational model, individual differences, model-based inference, sampling, temporal
dynamics

A core aim of cognitive science is to develop testable theories of
psychological functions that make quantitative predictions about
behavior. To this end, a theory may be cast as a computational model
(a formal mathematical model or a computer simulation) that
instantiates the psychological mechanisms and processes assumed by
the theory. A computational model embodies the core assumptions of
a psychological theory, along with auxiliary assumptions that are
needed to connect the theory with empirical observations. Such a
model may be regarded as a representation of a target system (Suárez
& Pero, 2019), that is, the “ground truth” model that operates in an
agent’s brain. Many authors have written about the importance of
computational modeling for theory development and testing in

psychology (e.g., Farrell & Lewandowsky, 2018; Guest & Martin,
2021; Lee&Wagenmakers, 2014; Oberauer &Lewandowsky, 2019;
Roberts & Pashler, 2000; Robinaugh et al., 2021; Simon, 1992;
van Rooij & Baggio, 2021). To highlight just a few benefits,
models allow us: (a) to generate predictions from a theory and
compare different theories against data; (b) to test “proof-of-
principle” explanations of an empirical phenomenon; and (c) to
identify latent psychological mechanisms and processes that
underlie some cognitive capacity (e.g., decision making, object
recognition, visual working memory). With advances in comput-
ing power and computing software, computational modeling is
increasingly widely adopted in psychology, neuroscience andT
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psychiatry (Huys et al., 2016; Jarecki et al., 2020; Kriegeskorte &
Douglas, 2018; Robinaugh et al., 2021).
Across a wide variety of domains, researchers have taken great

strides in constructing models that can explain and predict behavior
(and link this behavior with neural mechanisms; e.g., Forstmann et al.,
2011; Love, 2015; Turner et al., 2019). These models frequently take
the form of process models that describe how information flows
through the cognitive system (Jarecki et al., 2020), at whatMarr (1982),
dubbed the “algorithmic level” of analysis. Crucially, most models
contain parameters that allow them to be flexible (Roberts & Pashler,
2000): The samemodel can be used to fit data from different conditions
or individuals by tuning these parameters. By fitting parameters to data,
we often seek to identify “the underlying mechanism of …” some
target phenomenon (e.g., a behavioral effect, cognitive capacity, neural
activation). The model then provides a mechanistic explanation of this
phenomenon—an explanation in terms of cognitive mechanisms and
the parameters that govern their operation (Bechtel & Abrahamsen,
2005, 2010; Kaplan & Craver, 2011; Simon, 1992). This is frequently
where the explanation of the target phenomenon ends: We point to a
relation between the target and the estimated model parameters, and
these model parameters are mapped onto meaningful psychological
constructs. What more could we want?
Take, for example, evidence accumulation models of decision

making (illustrated in Figure 1 and explained in more detail in the
section “Examples of model-based analysis”). These models are
used widely to account for reaction time (RT) and accuracy data and
decompose these observed data into meaningful, latent psychologi-
cal variables (i.e., model parameters) such as processing speed and
response caution (for reviews, see e.g., Donkin & Brown, 2018;
Gold & Shadlen, 2001; Smith & Ratcliff, 2004). An empirical
phenomenon might be that older adults are slower to respond than
younger adults. Fitting the behavioral data from both groups with an
evidence accumulation model suggests that older adults are slower
to respond, not because they have a lower processing speed, but
because their decision threshold is higher: They need more evidence

to respond (e.g., Ratcliff et al., 2004). The increase in the decision
threshold here is a mechanistic explanation for the difference in
behavior between young and older participants. Such model-based
explanations are rife in cognitive science, and we could easily have
picked examples from our own back catalog (e.g., Farrell et al.,
2010; Ludwig, Butler, et al., 2009; Ludwig, Farrell, et al., 2009;
Perez Santangelo et al., 2022).

However, such explanations are incomplete: what is critically
missing is why and how parameters come to take on the values that
best account for the data. In other words, the hypothesizedmechanisms
themselves beget explanation:Why was the decision threshold higher?
What prevented older adults from adopting a lower, more appropriate
threshold (given the objective of the task)? How did they come to settle
on the (high) value of the decision threshold they adopted? Although
such questions may be addressed in the Discussion sections, modelers
generally consider them beyond the scope of the model (see Starns &
Ratcliff, 2010, for an attempt to address such questions for this
particular case).

We recognize that the explanatory scope of models has to be
restricted for them to be useful. However, why and how agents “settle”
on some combination of parameters are important psychological
questions in their own right that must be answered if we are to produce
better and more complete explanations of cognitive, neural and
behavioral phenomena. Addressing these questions involves adopting
the agent’s perspective and considering the constraints, information,
and cognitive mechanisms at play while the agent attempts to navigate
a latent “cognitive parameter space” over the course of a task. We
argue that this perspective is lacking in many applications of model-
based analysis and failing to adopt this perspective has several
consequences. First, models and their parameter estimates typically
give a static representation of the “average latent state” that gave rise
to behavior. This average state may not be representative of the
agent’s state at any one point in time. Second, models are overly
flexible in their predictions, because they do not adequately capture
the constraints that the agent operates under. Both these factors can
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Figure 1
Relation Between the Ground Truth Model, the Data Generated From the Ground Truth Model, and
the Model(s) That Are Fit to These Data
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“right”

D = {RT, choice}
...

left/right?

evitingoc detamitseledom hturt dnuorg
modelcorrect

error

Note. An agent performing the classic random dot motion discrimination task. They are making decisions by
accumulating the net evidence in favor of one or the other motion direction toward a decision boundary. In this
case, the decision boundaries “collapse” over time. This ground truth model generates data, D, conditional on its
parameter values, Ψ. The data in this example consist of RTs and choice outcomes, summarized by RT
distributions for correct and error decisions. These data may be fit with a variety of cognitive models, k= 1,… ,K,
each with their own set of parameters, θk. The challenge for the modeler is to estimate the parameters of the model,
conditioned on the observed data, and to select the model that best approximates the ground truth. RT = reaction
time. See the online article for the color version of this figure.
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lead to erroneous parameter estimates and model-based inferences.
Third, by focusing on this average state, modelers often overlook
important andmore general questions about the flexibility with which
cognition and behavior is adapted, and the mechanisms underlying
this flexibility. In this article, we outline a program of grounding
cognitive model parameters that puts the agent’s perspective center
stage, with the aim of expanding and improving explanations in the
cognitive and brain sciences.
We start by examining the rationale and practice of model-based

analysis, with examples from a variety of cognitive domains.We then
operationalize the research program by identifying three focused
research questions that are typically overlooked in such analyses, but
that must be addressed in order to understand why and how cognitive
model parameters take on the values they do. First, we need to know
what constraints are acting on the latent states that generated the
empirical data. Second, we need to establish the agent’s objectives
(such asmaximizing speed, accuracy, reward) that drive the change in
parameter values. Third, we need to work out what mechanisms and
information are available to the agent to achieve their objective(s).
Along the way, we also address the analytic problem of how, as
cognitive scientists, we can estimate the change in parameter values
over time, and the inferential pitfalls of not doing so. The overall
argument we pursue here is that grounding cognitive model
parameters is critical for understanding variation in cognition and
behavior over time, between different environmental conditions
and between different populations or individuals.

Model-Based Analysis

To help illustrate the logic of model-based analysis, we consider
the broad class of evidence accumulation models of rapid decision
making. We will use evidence accumulation models as a running
example throughout this article, because these models are a
particularly popular choice for model-based analyses. We will give
a brief description of this model class (readers familiar with these
models can skip the next subsection). We then provide examples of
model-based inferences, drawn from evidence accumulation models,
but also from a selection of other models from other cognitive
domains. These examples illustrate how models and their parameters
are used to explain empirical phenomena such as experimental
effects, neural signals, and individual and/or population differences.
Importantly, these examples underscore that our arguments apply to
cognitive models in any domain of psychological science.

Evidence Accumulation Models

Models of rapid choice come in many different flavors (e.g.,
Brown & Heathcote, 2008; Heathcote & Matzke, 2022; LaBerge,
1962; Link & Heath, 1975; Ratcliff, 1978; Usher & McClelland,
2001; Vickers, 1970), but they all share the basic idea that evidence
in favor of the decision alternatives accumulates over time to a
critical threshold. There is competition in this accumulation process
between the choice options, and the process is corrupted by one or
more sources of noise. Once the evidence for one of the alternatives
reaches the critical threshold, the motor response associated with
the chosen option is initiated after some “nondecision” time. The
decision/drift diffusion model (DDM; Ratcliff, 1978; Ratcliff et al.,
2016; Ratcliff & Rouder, 1998; Smith & Ratcliff, 2004) for two-
choice tasks is probably the most frequently used model from this

class. It assumes that the evidence in favor of one option is subtracted
from the evidence in favor of the other option. The net evidence then
drifts toward an upper or lower decision boundary, which represent
the two decision alternatives.

The agent illustrated in Figure 1 makes decisions in a classic
motion discrimination task in line with the DDM, in this case
augmented with time-varying decision boundaries (Hawkins et al.,
2015; Ludwig, 2009; Smith, 2000). Suppose this model is the
ground truth. The agent monitors the responses of sensory channels
tuned to the different motion directions and subtracts the response
of, say, the rightward channel from the leftward channel. Positive
net evidence then points toward the motion stimulus moving left;
negative net evidence points toward the motion stimulus moving
right. The decision boundaries correspond to the difference in
evidence that would be needed in order to commit to one or the other
choice. An error occurs when, due to noise in evidence accumulation
process, the integrated evidence hits the incorrect boundary (e.g.,
hitting the boundary for a rightward response when the pattern is
moving left). Better quality sensory evidence (e.g., higher motion
coherence) results in a faster drift toward the corresponding boundary.
As a result, the decision is made more quickly and more accurately.
The probability of making an error can be reduced by increasing the
separation between the decision boundaries, but at the cost of an
increase in RTs. Other parameters of the model (typically) include the
mean rate of evidence accumulation, the internal noise in the evidence
accumulation process, the nondecision time, the prior bias of an agent
toward one decision and the intertrial variability in the starting
position and accumulation process.

Model-Based Inferences

Given the ground truth model, an agent will produce observed
behavioral data (in this example: RTs and choices), D, conditioned
on a set of parameter values Ψ. As cognitive scientists, we want to
know whatMðDjΨÞ is. However, the true model and its parameters
cannot be known. We can only try to approximate it by fitting the
data with one or several models. For example, many different
versions of the DDM have been proposed that include mechanisms
such as: between-trial noise in the starting point; between-trial noise
in the drift rate (Ratcliff & Rouder, 1998); urgency signal (Cisek
et al., 2009); collapsing decision boundaries (Ditterich, 2006; Smith,
2000); attentional biases in the drift rate (Krajbich et al., 2010). This
variety of mechanisms, and more generally the variety of available
models within the broader class, presents the modeler with a plethora
of choices when fitting the observed data (Dutilh et al., 2019). These
choices give rise to theK alternativemodels,M1ðθ1jDÞ : : :MkðθkjDÞ,
on the right-hand side of Figure 1. Note the reverse dependence of
the parameters on the data: Our challenge is to estimate the parameter
values (for each different model), given some observed data. Where
several models are fit to the data, we (somehow) need to select the
model that comes closest to the true model (Burnham & Anderson,
2002; Navarro, 2019; Pitt et al., 2002; Shiffrin et al., 2008).

The methods used to estimate model parameters and to select
between competing models are highly active research areas in their
own right, which we will not deal with in detail here (for general
overviews, see Farrell & Lewandowsky, 2018; Lee &Wagenmakers,
2014). Broadly speaking, cognitive modelers seek two types of
inferences: inferences through model-selection or through parameter
comparison. Inferences through model-selection involve setting up
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models that represent competing explanations for some target
phenomenon, and then selecting between these models through some
procedure that trades off the quality of the fit and model complexity
(e.g., various information criteria, Bayes factors, cross-validation).
Inferences through parameter comparison involve fitting the data with
different sets of parameters to account for the target phenomenon.We
then adopt some statistical procedure to decide which model
parameters relate most strongly to this target.
For example, we may have two explanations for the slowing

of RTs with age (e.g., Ratcliff et al., 2004, as discussed in the
introduction): Older people are slower to accumulate evidence
(lower drift rate) or they may needmore evidence before committing
to a response (increased decision boundary separation). Inference
through model selection would involve fitting the data from both
groups with a model in which the drift rate varies between the two
groups but the decision boundary remains constant, and a model in
which the drift rate is constant but the boundary separation may
vary. Inference through parameter comparison involves fitting the
data from both groups independently with their own sets of
parameters, and then performing statistical tests to assess which
parameters differentiate the groups. Note that modelers often adopt
both or a mixture of the model-selection and parameter comparison
approaches. For instance, they may use both approaches indepen-
dently as a way to provide converging evidence for a particular
mechanistic signature. Alternatively, model-selection may be used
to decide on a particular instantiation of the broader model class
(e.g., selecting between different flavors of evidence accumulation
models, such as the DDM, linear ballistic accumulator, leaky
competing accumulator, etc.). The target phenomenon is then
explained through a parameter comparison for the selected model
instantiation.
In Table 1, we have compiled a (relatively arbitrary) selection of

examples of model-based inferences, regardless of whether these
inferences were obtained through model-selection or parameter
comparisons. These examples come from a variety of models/
cognitive domains: decision making, memory, learning, (overt)
attention, perception, and categorization.1 Within each domain, we
listmodel-based explanations for different classes of target phenomena:
experimental effects, individual/population differences and (where
possible) neural correlates. No doubt these examples are biased by our
own knowledge of the field and the reader can probably think of
examples from their own area of expertise.
In each of these cases, a model-based analysis decomposes the

observed data into a small number of meaningful psychological
dimensions, as illustrated in Figure 2. We then look for differences
along those dimensions between different experimental conditions,
individuals or populations, or we try to identify neural signals that
correlate with the variation along these dimensions (van Maanen &
Miletić, 2021). For instance, in Figure 2, the data consist of a
sequence of RT and accuracymeasurements. When we fit a model to
these data, such as the DDM, these data are effectively projected into
a low dimensional space (downward dashed arrow, estimated
cognitive model). For ease of illustration, we have shown just three
dimensions, corresponding to key mechanisms that may induce
differences in RTs (and accuracy) between individuals and groups
(the full model has more than three parameters). Each individual
may be represented as a single point within this space. For two
hypothetical groups of participants (e.g., young and older people,
represented by blue and orange points, respectively), there is some

degree of individual variation along all three dimensions. In addition,
the two groups differ systematically in their position along the
“decision threshold” axis, suggesting that this mechanism specifically
is responsible for group differences in the behavioral data. We can
now ask why and how different people or groups occupy different
locations in this space. In the remainder of this article, we break this
problem down into three focused research questions that must be
addressed to understand why and how cognitive model parameters
take on the value they do.

What Are the Constraints on the Model Parameters?

Consider again the agent illustrated in Figure 1. They perform a
perceptual decision-making task using one particular instantiation of
the broad class of evidence accumulation models. This system is
characterized by a set of parameters,Ψ. The true values forΨmay be
represented as a point in a cognitive parameter or state space, where
the dimensions of the space represent the parameters of the ground
truth model. Figure 2 (bottom-left, ground truth model) illustrates
the agent’s position in a three-dimensional (sub)space. The data
generated by the agent depends on their (ground truth) position in
this space (upward solid arrow).

It may be tempting to explain why an agent occupies a particular
position in this space by identifying why this position is special in
some way. For example, we could justify an observed value of
decision threshold by comparing it to the value that maximizes some
objective in an experiment (e.g., Balci et al., 2011; Bogacz et al.,
2006; Hawkins et al., 2012; Starns & Ratcliff, 2010; Zacksenhouse
et al., 2010). Indeed, we discuss the importance of objectives, and
individual variation therein, in the next section (“What is the agent’s
objective?”). For now, suffice to say that agents may attempt to
achieve some objective by moving about strategically in the cognitive
parameter space.

Almost all cognitive models allow for some degree of strategic
control over (a subset of) model parameters. Take each of the model
classes represented in Table 1 in turn. Evidence accumulation
models assume that agents can trade-off accuracy against speed by
controlling the decision threshold (Ratcliff & Rouder, 1998; Voss
et al., 2004). Parameters such as the drift rate and nondecision time
are under much less strategic control, but may still be modulated to
some extent through, for example, selective attention and arousal.
Multinomial processing tree models of memory typically contain
at least one or two thresholds for carving up the decision space
(Batchelder & Riefer, 1990; Bayen et al., 1996), and these thresholds
are to some degree under strategic control (e.g., influenced by
expectations in Bayen et al., 2000). Flexible resource models of
visual working memory (e.g., Bays & Husain, 2008) assume that
there is a limited capacity resource that may be configured adaptively
according to the demands of the task, which in turn determines the
precision with which items are represented. Reinforcement learning
models feature learning rates that may be adjusted to alter the
sensitivity to recent reward feedback and volatility in the environment
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1 Readers may disagree about whether (some of) these examples really
constitute explanatory, mechanistic cognitive models (Jarecki et al., 2020;
Oberauer & Lin, 2017). However, we note that these models are often given a
mechanistic interpretation or implementation (e.g., “discrete slot” vs.
“continuous resource” models of visual working memory give rise to
different flavors of mixture models Bays et al., 2009; Van den Berg et al.,
2012; W. Zhang & Luck, 2008).
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Table 1
Examples of Model-Based Analyses in Multiple Cognitive Domains

Domain Target phenomenon Model-based inference

Rapid decision making (evidence
accumulation models)

Participants are able to trade-off speed with accuracy
based on instructions.

Decision boundaries are higher under accuracy instructions
(Voss et al., 2004).

Older adults are slower to respond in a variety of
cognitive tasks.

Older adults set decision boundaries too high and also have
longer nondecision times (Ratcliff et al., 2004).

Individual variation in responsiveness to speed–
accuracy instructions.

Flexibility in decision boundary adjustment is linked to
connectivity between presupplementary motor area and
striatum (Forstmann et al., 2010).

Episodic memory (multinomial
processing tree models)

Better source memory for information that is consistent
with prior expectations.

Guessing parameter is biased by expectations about the
source derived from schematic knowledge (Bayen et al.,
2000).

Memory deficits in Alzheimer’s disease. Greater deterioration in immediate retrieval primacy
compared to immediate retrieval recency with disease
progression (Lee et al., 2020).

Activity in posterior parietal cortex (PPC) is correlated
with item and source memory.

PPC activity linked to item and source memory guessing
biases (Pergolizzi & Chua, 2016).

Visual working memory (VWM;
mixture models)

VWM performance decreases with set size. The decrease in performance with memory load largely
reflects a decrease of the probability that the item is
represented in memory (W. Zhang & Luck, 2008).

VWM deteriorates with age. The precision of VWM representations decreases with age;
the probability of reporting a nontarget feature increases
with age (Peich et al., 2013).

VWM load and delay related activity in a network of
frontal, parietal and occipital regions.

Load-dependent increases in precision variability is linked
to the quality of neural representations in the superior
intraparietal sulcus (Galeano Weber et al., 2016).

Learning (reinforcement learning
models)

“Positivity bias” in learning: people often learn more
from positive compared to negative prediction errors.

Learning rates depend on outcome valence, but in opposite
ways for factual and counter-factual learning (Palminteri
et al., 2017).

Impaired performance in reversal learning in
participants with more obsessive compulsive disorder
symptoms.

Higher obsessive–compulsive symptoms linked to
increased (subjective) transition uncertainty (Fradkin
et al., 2020).

Exploration–exploitation dilemma in reward-based
learning.

Inverse temperature is related to Locus Coeruleus—
Norepinephrine system, suggesting this system is
involved in controlling choice strategy (Jepma &
Nieuwenhuis, 2011).

Active vision (dynamic eye
movement control models)

Oculomotor control is modulated by reading text in
different layouts (e.g., normal vs. inverted),
suggesting cognitive control over eye movements.

Text layout manipulations affect the perceptual span and
the scale of an autonomous timer mechanism (among
others; Rabe et al., 2021).

Individual differences in scan paths during scene
viewing.

Differences in attentional window size parameters (among
others) mediate variation in saccade amplitudes between
individuals (and tasks; Schwetlick et al., 2023).

Development of reading ability manifests itself in
changes in fixation duration and saccade amplitudes.

Primary difference between children and adults lies in the
rate of lexical processing (Reichle et al., 2013).

Perceptual learning (template
matching models)

Orientation discrimination in noise improves with
training (thresholds decrease over time).

Learning is mediated by narrowing of filter tuning
(exclusion of external noise) and suppression of additive
internal noise (Dosher & Lu, 1999).

Deficits in (spatial) vision in adults with amblyopia. Visual performance deficits in amblyopia are mediated by
increased internal noise and deficient perceptual
templates (Xu et al., 2006).

Perceptual learning may be mediated by changes in
early sensory encoding or by the changes in the
readout of the early sensory code.

Learning results in changes in the perceptual weighting of
the input and is reflected in anterior cingulate cortex
activity, suggesting a higher order, nonsensory locus of
perceptual learning (Kahnt et al., 2011).

Categorization (category learning
models)

Category learning is more impaired by a concurrent
task when learning simple, explicit rules compared to
more complex implicit rules that require integration
across multiple dimensions.

A deficit in learning explicit rules is best captured by a
decline in the ability to select new rules; this decline
leaves implicit rule learning unaffected (Waldron &
Ashby, 2001).

Intact category learning despite impaired recognition for
individual items in amnesic patients.

The threshold for forming a new representational cluster is
different between amnesic patients and controls (Love &
Gureckis, 2007).

Prototype and exemplar models generate similar
predictions for behavioral categorization
performance.

Trial-by-trial activation of lateral occipital cortex and
posterior parietal cortex correlates with a measure of
representational match derived from exemplar models
(Mack et al., 2013).

Note. The examples were chosen to span a range of model classes, cognitive capacities and empirical phenomena. In particular, for each domain/model
class, we selected a basic experimental effect, a population or individual difference, and (where possible) a neural correlate. We have focused generally on
relatively well-established models and generally highly cited papers. Verbal labels for model parameters (or model-based metrics) are marked in italics.
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(Behrens et al., 2007), as well as parameters that control the degree of
exploration (Daw et al., 2006; Wilson et al., 2014). Models of eye
movement control assume that observers have some control over their
perceptual span (the region fromwhich perceptual information is taken
to select the next fixation location) and the rate of an internal timer that
paces the eyemovements (Engbert et al., 2005; Nuthmann et al., 2010).

Perceptual template matching models typically assume that observers
can tune the properties of their perceptual template, such as its shape
and its sensitivity (Lu & Dosher, 2008). Models of category learning
may include a threshold for the abstraction of exemplars to a new
category representation (e.g., cluster, prototype or rule; Love &
Gureckis, 2007).

However, before we attribute an agent’s position in the cognitive
parameter space to strategic control, we should consider the various
constraints that limit the space that is accessible to the agent. That is,
the more constrained the range for a particular parameter is, the less
likely it is that the participant settled on a particular value through
strategic control. Rather, in that case, the explanation for the agent’s
position lies in these constraints and they should form part of
the model. In this section, we highlight three broad classes of
constraints—biophysical, environmental, and cognitive—and then
discuss how such constraints may be included in our models.

Constraints on Strategic Control

Biophysical Constraints

Some parameters will be subject to “hard-wired” constraints
imposed by physical or physiological limits. For instance, afferent
and efferent delays (making up nondecision time in models of
evidence accumulation) cannot be reduced below a certain minimum
time that is determined by the speed of communication along the
neural pathways for sensory signaling and movement production
(e.g., Bullier, 2001; Munoz & Wurtz, 1995; Pruszynski et al., 2010).
Metabolic costs associated with neural firing and synaptic transmission
may limit representational capacity (Attwell &Laughlin, 2001; Levy&
Baxter, 1996). Indeed, such costs may contribute to the spatial and/or
temporal filtering characteristics of the sensory apparatus, which
constrain the fidelity with which an input may be represented (Vincent
& Baddeley, 2003). Moreover, noise is inherent in neural processing
and is often correlated between neurons, so that it cannot be eliminated
completely by spatial or temporal pooling (Averbeck et al., 2006;
Shadlen et al., 1996). However, in our modeling, we often ignore these
factors. That is, nondecision times are often left to vary over a wide
range, sometimes resulting in implausibly large estimates (e.g., over
half the RT in Ludwig, 2009). Likewise, the mechanisms that encode
the inputs are typically left unspecified and the noise parameters in the
model are often used as “scaling” parameters (i.e., fixed to some
arbitrary constant to make the model identifiable), or otherwise simply
tuned to account for the variability observed in the data.

Environmental Constraints

Properties of the environment may directly constrain some of the
model parameters to be within a certain range. One such property is
the information available to perform a particular task. Information is
often incomplete and uncertain (at least in “large-world” problems;
Gigerenzer & Gaissmaier, 2011; Simon, 1955) and, even if all the
relevant information is available, there may not be enough time to
use all that information. Even in simple experiments, information is
often noisy and feedback about performance is often either withheld
or stochastic. For example, in the classic perceptual decision-
making task illustrated in Figure 1, the stimulus itself is noisy (and
sometimes nonstationary; e.g., Holmes et al., 2016; Ludwig &
Evens, 2017). The quality of this information affects the rate at
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Figure 2
Cognitive Modeling Involves a Mapping Between High-Dimensional
Data and a LowDimensional, Psychologically Meaningful Parameter
Space
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Note. The matrix at the top shows some hypothetical data for a given
participant, which consists of a sequence of reaction times and accuracy
measurements, but could include other dependent variables (e.g., skin
conductance, EEG power in a particular spectral band). These data are
generated by a ground truth model (bottom-left) of the type shown in Figure 1.
For the sake of illustration, we only show a three-dimensional subspace of
parameters: the height of the decision threshold, the mean drift rate, and the
nondecision time, t0. Suppose these ground truth model parameters are subject
to constraints that limit the room for maneuver in the cognitive parameter
space. These constraints are represented schematically by the shaded cuboid.
An agent occupies a point in this space, which results in a noisy sample of
observed data (upward solid arrow from the black point; MðDjΨÞ). The
modeler takes the observed data and fits one or more models to these data by
tuning the free parameters (downward dashed arrow; Mkðθk jDÞ). The data
from a participant (N tuples of the dependent variables) are then mapped to a
point in this low dimensional space (estimated cognitive model, bottom right).
Different participants will occupy different positions in this space and, in this
example, there is also a systematic difference between two groups of
participants along the decision threshold axis. The participant who generated
the data is highlighted with a black outline (and re-plotted in the ground truth
model). Note that in this illustration we assume that the estimated cognitive
model is a good approximation of the ground truth model; that is, the
two models share these underlying dimensions. Nevertheless, the agent’s
position in the cognitive parameter space is not recovered exactly in the
parameter estimates: The estimated parameter vector (orange) is not aligned
with the parametersΨ in the ground truth model that generated the data. There
may be a number of reasons for this discrepancy, such as: (a) The structure of
the estimated cognitive model may not align exactly with that of the ground
truth model (i.e., the two models may not have exactly the same dimensions of
variation); (b) even if the estimated cognitive model matches the (unknown)
ground truth model, the data may not be sufficiently diagnostic for identifying
all the parameters of the ground truth model accurately (e.g., due to
methodological limitations, and the data being a noisy and finite sample from
the ground truth model); and (c) there may be error in the estimation procedure
and/or parameter trade-offs. RT = reaction time; EEG = electroencephalogra-
phy. See the online article for the color version of this figure.
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which evidence is accumulated: The drift rate for a low coherence
random dot motion stimulus is lower than that for a high coherence
motion pattern. However, other than constraining the model to
respect this ordinal relation, drift rate parameters are typically left
free to accommodate variation in behavior introduced by variation in
the quality of information.

Cognitive Constraints

The computations that can be performed on the available
information in the available time may be limited further by constraints
on cognitive capacities (e.g., processing speed, attention, working
memory capacity, etc.) and costs associated with using these capacities
(Anderson, 1990;Howes et al., 2009; Lieder&Griffiths, 2020; Simon,
1976). For example, in evidence accumulation models of multi-
attribute choice, attention cannot be deployed to all different attributes
of the different choice options simultaneously (Busemeyer et al., 2019;
Busemeyer & Townsend, 1993). Rather, comparisons are made on an
attribute-wise basis with attention switching sequentially between
attributes and options. This pattern of attending to different attributes at
different points in time, produces temporal fluctuation in the drift rate
during a choice epoch, even when the environment (i.e., information
about the choice options) remains constant. Although we may equip a
model with such attention switching mechanisms (Busemeyer &
Townsend, 1993; Krajbich et al., 2010), the drift rates associated with
different attributes and options, and the temporal profile of attention
switches are left free to vary over a wide range in order to account for
the observed behavior.

Identifying and Modeling Constraints

A useful way to think about these different constraints is that they
limit the room for maneuver in the cognitive parameter space. It is
likely that along any one dimension, a (weighted) mixture of
constraints limits the range of parameter values that may be adopted
(and/or the resolution with which parameters can be varied).
Moreover, the range will vary between parameters: Some parameters
will be constrainedmore strongly than others. In Figure 2 (ground truth
model, bottom-left), the grey shaded cuboid represents schematically
the constraints that limit the possible positions that an agentmay adopt.
This volume represents the part of the cognitive parameter space that is
accessible to the agent: This is the space in which the agent can exert
strategic control over the parameters.
When we fit a model to data, it would clearly be helpful to

incorporate these constraints in our parameter estimates. Consider what
would happen if we ignored the constraints in Figure 2. That is, from
the perspective of the modeler, the shaded cuboid does not exist. This
absence renders the space of possible parameter estimates wide open,
making the model more flexible than it should be. That is, the
parameters are free to vary over too wide a range, producing greater
freedom in the model predictions (Roberts & Pashler, 2000). As a
result, there is a good chance that our parameter estimates fall outside
the plausible region given by the properties of the environment, and the
cognitive and neural systems involved in the task (e.g., implausibly
large estimates of nondecision time in Ludwig, 2009). For example, the
estimated parameters shown in Figure 2 (bottom right), display greater
variation along the nondecision time axis than the constraints should
allow for (indeed, asobserved by Bompas et al., 2024). Such erroneous
estimates will have knock-on effects on other parameter estimates: too

long a nondecision time implies too short a decision time, which can
only be produced by increasing the mean drift rate and/or lowering the
decision threshold.

Of course, often modelers do impose constraints on parameters
when fitting models, for instance, by imposing hierarchical structure
in models and priors on the parameters (Lee &Wagenmakers, 2014).
However, common practice is to leave such priors relatively vague
and letting the data “speak for themselves.” Even if priors are more
informed, they are typically determined by the modeler’s experience
with what typical parameter estimates look like for the model in
question, rather than mechanistic considerations. For the purpose of
grounding cognitive parameters, constraints on parameters should be
informed by such mechanistic considerations.

For example, the drift rate is thought to be determined primarily by
the input (i.e., environmental constraints) and the transduction of that
input into an internal representation (biophysical constraints).
Therefore, if we know the nature of the inputs an agent encounters
and have a model of the basic (sensory) machinery by which those
inputs are represented, we can estimate the drift rate for any one
specific input. At least for perceptual tasks, we can use our knowledge
of early visual coding in order to turn an input image (sequence) into a
time-varying drift rate (Ludwig, 2009; Smith, 1995; Zylberberg et al.,
2012). With the emergence of convolutional neural networks, it may
be possible to use such a system as a front-end, in order to generate
internal visual representations of more complex inputs (e.g., medical
images in Holmes et al., 2020). Augmenting the basic evidence
accumulation model with a perceptual front-end obviously introduces
additional complexity to the model. However, basic perceptual
mechanisms have been well-characterized psychophysically and/or
physiologically, and deep neural networks are typically trained
independently on a different task and different data sets. To the extent
that this front-end can be specified independently, these additional
mechanisms can actually reduce the degrees of freedom of the model,
by removing the freedom for the drift rate to take on any value. Note
that this approach is not limited to perceptual tasks or, indeed,
evidence accumulationmodels (see Sanders &Nosofsky, 2020; Zou&
Bhatia, 2021, for examples of this approach in category learning with
naturalistic visual or linguistic inputs, respectively).

To summarize, cognition and behavior are dependent on the
position of an agent in a cognitive parameter space. This state space is
formed by the dimensions (i.e., parameters) of the ground truth model
that the agent brings to bear on a particular task.We have reviewed the
different sources of constraints that limit the room for maneuver in
this multidimensional space. A (weighted) mixture of constraints will
act on each dimension, and this weighted mixture may vary for the
different dimensions. As a result, movement along some dimensions
will be more constrained than movement along other dimensions.
This variation in freedom of movement along different dimensions
corresponds to variation in the degree to which parameters may be
controlled strategically.2 Grounding cognitive parameters involves
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2 In this article, we often refer to “strategic control parameters,” which gives
the impression that some parameters are under strategic control (e.g., decision
threshold) and others are not (e.g., nondecision time). This terminology ismerely
useful shorthand and, as illustrated in Figure 2, this dichotomy is false. Exerting
strategic control is a matter of moving about in a multidimensional space. It is
possible that an agent simplifies the problem by ignoring those dimensions that
are under less control (thereby reducing the dimensionality of the space they
have to navigate). Nevertheless, even then the remaining parameters may vary in
the degree to which they can be controlled strategically.
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identifying and, if possible, modeling these constraints. When these
constraints are not adequately incorporated, models are too flexible in
that they assume people can “go anywhere” in the parameter space.
As a result, we are likely to make incorrect inferences about the
agent’s position and movement in the state space. Of course, a key
question is why an agent needs to move in this space at all: why are
they exerting strategic control? In order to address this question, we
need to understand what it is that they are trying to achieve, that is,
their objective.

What Is the Agent’s Objective?

A satisfying answer to thewhy question—why does an agent adopt a
particular position in the cognitive parameter space in Figure 2—would
be a rational explanation of this position (Anderson, 1990; Lieder &
Griffiths, 2020; Oaksford & Chater, 2007). Is the position instrumental
in achieving some objective? Different positions in this space will
generate different behaviors and consequently lead to different
outcomes. The utility of a particular outcome will depend on an
agent’s objective. In a rational analysis a single, normative objective
is typically assumed. The question is then how the agent might
achieve this objective. Unfortunately, many (if not most) psycho-
logical experiments are not designed with the goal of inferring a
participant’s objective and linking it to the estimated model
parameters (see below for examples of exceptions). As a result,
objectives are free to vary and there may be a great deal of variability
between participants and populations in their chosen objectives. This
variability in objectives is a source of individual or population
differences in cognition and behavior. In this section, we will discuss
the importance of setting a clear task objective, but also the
importance of recognizing individual differences in the objectives
that are actually adopted by agents.

Variable Objectives = Variable Behavior

Figure 3A illustrates schematically the relation between a
strategic control parameter Ψj and two different objectives. For
example, the objectives might be reward rate and accuracy, with the
decision threshold as the control parameter. The relation between the
height of the decision threshold and reward rate is nonmonotonic: set
the decision threshold too low and the agent will make too many
errors; set the decision threshold too high and they will spend too long
on any one decision when they should be moving on to the next trial
(i.e., reward opportunity). In contrast, the relation between decision
threshold and accuracy ismonotonic, with accuracy improving up to a
ceiling as the decision threshold is increased. Maximizing the
objective involves varying the relevant strategic control parameter(s)
and finding the peak of the function (we discuss this search process in
more detail in “What mechanisms and information are available to
navigate the cognitive parameter space?”). As such, different (groups
of) participants who have adopted different objectives are likely to
settle on different values of this control parameter (regardless of
whether they succeed in finding the optimal parameter value).
In most cognitive modeling endeavors, the participant’s objective

is not linked to the parameter estimates and, in any event, the
objective in many psychological experiments is either vaguely
specified or not at all. Take, for example, the common instruction to
“try to respond as quickly and as accurately as possible.” It is left for
participants to figure out what these instructions mean for them.

Some participants may only want to achieve a minimum acceptable
level of accuracy and want to leave the lab as quickly as possible
(Hawkins et al., 2012). These participants may adopt a low decision
threshold so that they respond quickly, but at a cost of a higher error
rate. Others may care more about accuracy than response speed and
set their threshold higher (e.g., Bohil & Maddox, 2003; Starns &
Ratcliff, 2010). Still others may be aiming for a certain level of
confidence in their decisions (Lee et al., 2014; Vickers & Lee, 1998)
or the maximum reward rate (Bogacz et al., 2006). If participants are
left to make up their own objectives, the variation therein will be a
source of uncontrolled variance in the data and in any parameter
estimates derived from those data.

An obvious solution to counteract this uncontrolled variance is to
formulate a task objective explicitly, for instance, by specifying a
clear and fully transparent incentive structure. This approach is
standard in experimental economics (for reviews, see Camerer &
Hogarth, 1999; Hertwig &Ortmann, 2001; Houser &McCabe, 2014)
and has found some traction in psychology as well. For example,
Malhotra et al. (2017) designed a decision-making experiment as a
game where participants had a limited time to collect as many reward
points as possible and had to make correct decisions to obtain a
reward. Therefore, participants were incentivized to balance their
speed and accuracy in order to maximize their reward rate (see also
Evans et al., 2017; Starns & Ratcliff, 2012). In unspeeded decision
paradigms, participants may be incentivized to maximize their
accuracy and confidence judgements jointly, through the use of Brier
scores (or variations thereof; cf. Bang et al., 2017; Brier, 1950; Yu
et al., 2015). In experimental economics, evenwhen incentives do not
shift behavior on average (compared to some baseline that involves
no or a different kind or level of incentives), they tend to make
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Figure 3
Objectives as a Function of a Single Strategic Control Parameter
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Note. (A) Different objectives may depend on the value of a strategic
control parameter in different ways. The solid line shows a nonmonotonic
relation between an objective (e.g., reward rate) and ground truth parameter,
Ψj (e.g., decision threshold). The dashed line shows a different objective
(e.g., accuracy). Agents looking to maximize these different objectives will
settle on different values of Ψj. For the sake of illustration, the curves are
drawn schematically and scaled arbitrarily. (B) The agent’s estimates of the
objective will often be uncertain, illustrated with the error ribbon around the
reward rate objective from Panel A. The agent samples the objective at four
different values of control parameter Ψj. The circles illustrate the noisy
objective estimates that might result from taking just a single sample. The
triangles illustrate the objective estimates that result from averaging over
multiple samples taken at each point in the parameter space. Clearly,
integrating the objective estimates over multiple samples results in more
accurate estimates, but at a greater temporal cost. The thin black line shows
the true (mean) objective.

8 LUDWIG, STUCHLÝ, AND MALHOTRA



behavior less variable (Camerer & Hogarth, 1999). Presumably, this
reduction in variability is at least partly down tomore people adopting
the same, experimenter intended objective, and having (learnt) some
knowledge of how to aim for that objective given the task
environment.
In addition to specifying an explicit objective, participants also

need knowledge of how this objective relates to the task environment,
such as the number of trials, the penalties associated with incorrect
decisions, dependence on other agents’ actions, and so forth. These
task features may be conveyed through instructions and/or through
experience with the task (learning). More generally, people may vary
in how they represent the task environment due to variations in
background knowledge, cognitive capacities, and how they perceive
and respond to feedback from the environment (Szollosi et al., 2023).
To the extent to which this variability is left unconstrained, it will
result in variation in cognition and behavior.
When a clear task objective has been defined, and the task

environment is structured so as to encourage maximizing this
objective, agents may nevertheless fail to meet the objective. This
failure may have various reasons, including limitations on cognitive
and/or temporal resources (Anderson, 1990; Howes et al., 2009;
Lieder & Griffiths, 2020; Simon, 1976). If agents replace the
specified task objective with their own personal objective, what
appears to be suboptimal performance according to the standards
defined by the task, may actually be adaptive with regard to the agent’s
personal objective(s; Rahnev & Denison, 2018). For instance, in
reward rate experiments with blocks of a fixed duration, participants
may favor accuracy over reward rate (Balci et al., 2011), perhaps
because it is easier to track performance accuracy than it is to estimate
reward rate. As a result, they end up setting their decision thresholds too
high with respect to the defined task objective (e.g., Balci et al., 2011;
Bogacz et al., 2010; Bohil & Maddox, 2003; Starns & Ratcliff, 2010).
Alternatively, agents may adopt robust strategies that incorporate their
uncertainty about the variables that determine the task objective (e.g.,
maximize the minimum reward rate, given uncertainty about intertrial
intervals; Zacksenhouse et al., 2010). Therefore, the actual, variable
objectives adopted by participants, and their relation to estimated
model parameters, should be investigated.

Investigating Variable Objectives

Weconsider three possible approaches to investigate such individual
(or population) differences in objectives: (a) assess which objective
function best explains behavior; (b) elicit subjective reports; and (c)
take independent measurements of task-related variables. First, we
suggest that researchers runmodel comparisons to assess how different
objective functions relate to the strategic control parameters under
investigation. When two populations or individuals differ in estimated
parameter values (e.g., as illustrated in Figure 2), this analysis can help
identify whether a difference in objectives can account for observed
variability in parameter estimates. For example, in experiments where
participants are asked to maximize reward rate, we might find that a
subset of participants are unable to find the optimal value for the
decision threshold and set their threshold too high (Bogacz et al., 2010;
Starns & Ratcliff, 2012; Zacksenhouse et al., 2010). We may then
assess whether the data from these “suboptimal” participants are better
modeled by assuming that they were aiming for a different objective,
such as maximizing accuracy (see Figure 3A; Balci et al., 2011),
minimizing time spent in the lab without making too many errors

(Hawkins et al., 2012), or maximizing minimum reward rate
(Zacksenhouse et al., 2010). This approach may be generalized to
settings where there is no specific task objective, in which case the
variability in adopted objectives is likely to be greater.

Our second suggestion is to investigate objectives more directly.
For instance, where possible, we can ask participants to report their
objectives or elicit ratings of how much they care about different
possible objectives. Even in simple choice experiments of the type
discussed throughout this article, we might elicit ratings of how
much participants cared about speed, accuracy, reward and so forth.
Where objectives are less accessible for subjective report, wemay be
able to infer them by giving participants a choice between different
tasks that embody different objectives. For example, Kool and
Botvinick (2014) let participants choose (and switch) between a
high-effort, high-reward task and a low-effort, low-reward task.
Presumably, participants who spent more time pursuing the high-
effort task cared more about the reward than participants who chose
the low-effort task, who likely preferred to save energy. It is also
plausible that this type of variability is linked to stable personality
traits such as “need for cognition” (Cacioppo et al., 1996; Gheza
et al., 2023; Sandra & Otto, 2018). Either way, a critical step is to
relate the individual differences in subjective reports or inferred
goals to the variability in estimated parameters.

Finally, differences in estimated parameters between participants
may not stem from a difference in their objectives, but from their
ability to estimate these objectives. Therefore, our third suggestion
is to take independent measurements of task-related capacities that
are involved in estimating the objective. For example, for participants
to estimate an objective like reward rate, they need to be able to keep
track of the amount of time that has elapsed (Zacksenhouse et al.,
2010). Measuring individual differences in timing ability may then
offer insights into why participants do not adopt optimal decision
thresholds (Zacksenhouse et al., 2010) or collapsing boundaries
(Miletić & van Maanen, 2019). Again, the variability in these task-
related variables needs to be linked to the variability in the estimated
parameters. We have not encountered many examples of this last,
critical step and we believe this is fertile territory for a program of
grounding cognitive model parameters.

In summary, task objectives are not fully specified in most
psychological studies and participants can bring their own objectives to
bear on the task. This variation in objectives can lead people to different
positions in the cognitive parameter space, resulting in variation in
behavior. Understanding these individual and/or population differ-
ences is key to understanding why cognitive model parameters take on
the values they do. However, even when different agents have adopted
the same objective, they may still end up in different locations. To
understand this source of variation,we need to examine the information
and cognitive mechanisms available to agents to navigate the cognitive
parameter space. Therefore, we now take a closer look at the dynamics
of strategic control.

What Mechanisms and Information Are Available to
Navigate the Cognitive Parameter Space?

Suppose a participant has adopted a certain objective—either the
one prescribed by the experimenter or one they have defined for
themselves. They now have to try to achieve this objective by
varying the strategic control parameters of the ground truth model.
Understanding how they vary these control parameters is a critical
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ingredient of a more complete explanation of the participant’s
behavior. In essence, this is “simply” a standard optimization problem:
The agent has to move around in the cognitive parameter space in
order to find the peak of the objective function.3 There are many
algorithms available to solve such problems, such as gradient descent,
the Nelder–Mead simplex method, genetic algorithms, simulated
annealing and so forth. As such, a natural hypothesis is that human
participants try to approximate this kind of algorithm (Busemeyer &
Myung, 1992), either during performance of some specific task or over
the course of their lifetime (or, indeed, across generations over the
course of evolution). Although few articles make such a claim
explicitly, the assumption that participants perform some kind of
optimization over the short timescales of a specific task is often
implicit (including in our own work; e.g., Malhotra et al., 2017). In
this section, we examine this idea critically. In particular, we
highlight how this problem is much more complex for an agent than
it appears at first sight, due to limitations in the cognitive resources
and information available for a task. This complexity is likely to bear
on the mechanism(s) adopted by agents to navigate the parameter
space in many realistic environments.

Uncertainty in Objective Estimates

To appreciate the difficulty of the problem faced by the agent,
consider again the simple, one-dimensional objective function from
Figure 3A. This objective function is set by the environment (or the
experimenter in a cognitive task), and the agent is unlikely to have
much prior knowledge of global shape of the objective function that
they can use to guide their task performance. The best they can
probably do is to sample the objective at various different points
along the strategic control parameter axis (x-axis in Figure 3A) and
experience local feedback about the objective value at those points.
In the absence of prior knowledge or a rich internal model of the
global function, the agent cannot sample the objective through
mental simulation, but actually has to interact with the environment.
That is, for any given value of the control parameter, the agent
generates an action, observes the outcome and updates their estimate
of the objective function at that location. They then choose another
point along the axis, observe another outcome and form another
local estimate. The goal of the agent is to estimate simultaneously
the underlying objective function and to move to a point along this
axis that maximizes this objective function.
In many realistic situations, estimating even the local value of the

objective function is not straightforward because information gained
about the objective is likely to be uncertain (Lee et al., 2014;
Mikhael & Bogacz, 2016). We distinguish between two sources
of uncertainty. Environmental uncertainty is induced when the
environment provides noisy, delayed, or no feedback. Represen-
tational uncertainty refers to the internal representation of the
feedback and/or the internal (mis)estimation of the objective. Clearly,
both environmental and representational uncertainty compound each
other. Therefore, in what follows we assume that estimates of the
objective function are uncertain, without specifying the source of that
uncertainty.
We illustrate this uncertainty in our estimates of the objective by

the grey ribbon around the objective in Figure 3B. The ribbon shows
the scale of a distribution from which the objective estimates are
sampled when varying strategic control parameter Ψj. Suppose the
agent samples the objective at four parameter values. For each value,

they generate an action (e.g., response in an experimental trial),
observe the outcome and estimate the objective. They then select the
location with the highest objective estimate. The circles are possible
draws from the distribution when the agent just takes a single sample
of the objective. Clearly, these samples are quite noisy: The highest
estimate is given by the right-most parameter value, even though this
location is suboptimal if the agent’s objective is to maximize
reward rate.

If an agent wants to gain more precise estimates of the objective,
they must take several actions at each value of the strategic control
parameter and integrate multiple samples of the objective at each
location (e.g., compute the average objective value). As a result,
the estimates will be closer to the true values (illustrated by the
triangles). If the agent now picked the parameter value with the
highest estimated objective value (the third point from the left), they
would get quite close to the peak of the function. However,
estimating the objective over a larger number of samples comes with
an obvious temporal cost of generating repeated actions at each
control parameter value. If time (or the total number of trials in an
experiment) is limited, integrating samples over multiple actions
(i.e., trials in an experiment) limits the number of different control
parameter values that may be selected and the extent to which the
cognitive state space may be explored.

Costs of Exploring the Cognitive Parameter Space

The temporal cost associated with sampling the objective (i.e.,
information gathering) creates an exploration–exploitation dilemma
(Cohen et al., 2007; Sutton & Barto, 1998). That is, any time spent
exploring a (potentially) low-value region of the cognitive parameter
space is time that could have been spent exploiting a previously
sampled location with a higher objective value—an opportunity cost.
A rational agent would explore if the cost of doing so is outweighed by
the long-run benefit of being able to find and exploit a regionwhere the
objective value is higher. In other words, the utility of exploration
depends on the available time-horizon (Wilson et al., 2014). However,
inmost psychological experiments, this time horizon is relatively brief.
As a result, exploration of the objective may be limited to only a small
set of strategic control parameter values, rather than an exhaustive
search for the peak.

In addition to this opportunity cost, sampling the objective also
comes with cognitive costs. Take the simple strategy described in
relation to Figure 3B: The agent samples a small number of points in
the cognitive parameter space and then settles for the spot at which
the objective estimate was the highest. At the very least, this agent
would need to remember the location of the best objective estimate
so far and the estimated value itself. They then need to update these
when a better value is sampled in order to be able to return to and
exploit this location once they have taken a sufficient number of
samples. Moreover, they need decision mechanisms for selecting the
strategic control parameters to sample and the number of samples to
take. Therefore, even quite a “simplistic” sampling algorithm already
requires some (working) memory resources and decisionmechanisms.
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3 This function is also often referred to as a “cost” or “loss” function (e.g.,
in statistics or economics) or “fitness” function (e.g., in theoretical biology).
Note that where the objective is framed as a cost or loss, the function will
need to beminimized, but flipping of the objectivemakes no difference to our
arguments.
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Note that these demands come on top of the cognitive demands
imposed by the primary task itself.
The opportunity and cognitive costs associated with sampling the

objective are amplified when there are multiple strategic control
parameters, as in the three-dimensional cognitive parameter space
shown in Figure 2. Even if each parameter is sampled at only a few
different values, their combined number scales nonlinearly with the
number of dimensions (“the curse of dimensionality”; Bellman,
1957). The question is how participants navigate this multidimen-
sional space in pursuit of their objective, considering that they can
only acquire noisy, local information about the objective. Addressing
this question is core to the grounding of cognitive model parameters.
We outline several ways in which agents might respond to this
challenge.
First, as noted in the previous section, agents may choose an

objective that is easier to achieve and/or estimate. For example, instead
of maximizing reward rate, participants may choose to maximize
accuracy (Balci et al., 2011) because it may be easier to track accuracy.
We have already argued for the importance of probing the objectives
that are actually adopted by different agents, recognizing that theymay
differ from the one set by the experimenter.
Second, given an objective, agents may control only one or two

key parameters that have the biggest effect on this objective, thereby
reducing the dimensionality of the cognitive parameter space to be
searched through. For example, in an effort to maximize reward rate,
participants may only modulate their decision threshold and not
bother trying to control the more constrained drift rate and
nondecision time parameters. As a result, they need not navigate a
three-dimensional state space (Figure 2), but only need to move
along one axis (e.g., Ψ1 in Figure 2).
Third, instead of searching for the parameters that yield the

maximum objective value, the agent may aim for an objective value
that is “good enough”—satisficing instead of maximizing (Simon,
1955). All these approaches can potentially simplify the search
problem, but they do not eliminate it. Even if an agent has adopted
an easy-to-estimate objective and controls only a small set of
parameters in order to achieve a satisfactory value for this objective,
they still need to adjust these control parameters in order to find this
minimum satisfactory level. Therefore, any attempt to understand
why participants adopted a particular set of parameters also needs to
account for the way these parameters values have been arrived at.

Sampling in Cognitive Parameter Space

Given the constraints outlined, highly sophisticated forms of
statistical optimization (e.g., that rely on derivatives or function
learning) are cognitively implausible.4 In this section, we argue that
navigating the cognitive parameter space under these constraints is
a problem that is well-suited to a popular class of sampling
algorithms for approximate probabilistic inference. After discussing
the advantages of this framework, we will demonstrate the behavior
of an agent who adopts such an algorithm for getting around the
cognitive parameter space.
In statistics and machine learning, many sampling algorithms

have been developed to allow for approximate inference in complex,
multidimensional search (or hypothesis) spaces, where inference
would be intractable otherwise (“Monte Carlo” algorithms such as
importance sampling, Metropolis–Hastings, Gibbs sampling, and
sequential methods such as particle filtering; Andrieu et al., 2003;

Doucet et al., 2001; MacKay, 2003). ConsiderMarkov ChainMonte
Carlo (MCMC) techniques that are widely used for parameter
estimation in statistical and, indeed, cognitive modeling (Andrieu
et al., 2003; Van Ravenzwaaij et al., 2018). Broadly speaking, these
algorithms involve a set of “particles” in the (multidimensional)
search space, with each particle representing a parameter vector for
which the objective value is computed (in modeling applications, the
objective is typically the likelihood or posterior density of the
parameters, given some data). The algorithm performs a form of
local, stochastic, and greedy search where, for each particle, a
proposal value is drawn randomly from a transition distribution
centered on the current position. If this proposed position improves
the objective value, the proposal is accepted and the particle moves
to the proposed location; otherwise, the proposal is likely to be
rejected, in which case the particle does not move. In this way, a
chain of samples is produced that eventually will be concentrated in
a high-value region.

In the past 2 decades, various authors have proposed that such
sampling algorithms may also describe the way humans explore
complex, open-ended, internal hypothesis spaces in a wide variety of
cognitive domains, such as (among others): categorization (Sanborn
et al., 2010), causal learning (Bonawitz, Denison, Gopnik, &Griffiths,
2014; Bramley & Xu, 2023; Bramley et al., 2017), probabilistic
inference (Dasgupta et al., 2017, 2018), concept learning (Goodman
et al., 2008; Ullman et al., 2012; Zhao et al., 2024), perception (Bill
et al., 2022; Gershman et al., 2012; Haefner et al., 2016), judgment,
and decision making (Lieder et al., 2018). Sampling algorithms are
often presented as a cognitively plausible way for the brain to
approximate rational (Bayesian) inference with lower computational
overheads compared to the full normative solution (for reviews, see
Bonawitz, Denison, Griffiths, & Gopnik, 2014; Bramley et al., 2023;
Chater et al., 2020; Fiser et al., 2010; Sanborn, 2017; Shi et al., 2010;
Suchow et al., 2017; Vul et al., 2014).

Aside from their rational appeal, sampling algorithms have several
features that make them attractive and plausible candidates for how
an agent might navigate the cognitive parameter space under the
constraints discussed previously. First, they do not require (much)
prior knowledge of or assumptions about the global objective function.
For sure, it is easier for these algorithms to find high-value regions
when the underlying objective is smooth and parametrically simple to
describe, but the algorithm does not need to “know” this in order to
reach these regions. Second, MCMC algorithms search locally by
generating samples randomly around the current position of the
particles. Local search is consistent with the “stickiness” with which
humans update their beliefs in probabilistic inference (Dasgupta et al.,
2017) or causal learning (Bramley et al., 2017). In this way, MCMC
embodies a very natural trade-off between exploration and exploita-
tion. If the algorithm has found a high-value region, samples tend to be
concentrated in that region (exploitation), although there is some
probability of accepting a move to a lower value region and, via that
route, potentially finding a different mode (exploration). Third, the
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4 We do not claim that function learning itself is implausible; clearly it is
not (e.g., Brehmer, 1976; Kalish et al., 2004; Lucas et al., 2015). Indeed,
people can exploit spatial correlations in complex multimodal, multidimen-
sional functions in order to find high-value regions, with their behavior being
well described as a form of Gaussian process regression (Wu et al., 2018).
The key question here is whether these (effortful) cognitive capacities are
directed to the “metatask” of finding good strategic control parameters that
govern performance in a cognitively demanding primary task.
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memory requirements of these algorithms are very limited. A basic
MCMC sampler only needs to be able to compare a proposal
sample with the current value. It does not use information from
other particles or past iterations in order to extract information
about the global function (of course, more sophisticated MCMC
samplers do use this kind of knowledge and perform better as a
result; e.g., Differential Evolution MCMC; Heathcote et al., 2019;
ter Braak & Vrugt, 2008). As such, an agent navigating cognitive
parameter space may be conceptualized as a single particle (chain)
moving around the state space through local search (Bramley et al.,
2017; Vul et al., 2014).
In typical MCMC applications, proposals are evaluated without

actually moving the particles (indeed, any move is contingent on the
proposal being accepted after comparison with the current objective
value). However, we suggest that human agents frequently do not
have that luxury: They may not be able to simulate mentally what
will happen when moving to a different location in the state space.
Therefore, they can only evaluate a “proposal” location after actually
moving there, interacting with the environment and getting feedback.
Note the contrast with how sampling is often conceived of in other
domains (e.g., judgment and decision making; Lieder et al., 2018;
Stewart et al., 2006). In such scenarios, samples may be drawn
mentally before committing to an overt response (even then, sampling
takes time and incurs a cost; Lieder et al., 2018). Moreover, as noted
earlier, a single interaction at a given location in the state space will
often not be sufficient, due to uncertainty in the objective estimates.
Depending on the level of uncertainty, the agent may have to remain
in one place for some time and integrate feedback from several
interactions (e.g., trials).5

Figure 4 illustrates an agent who uses a sampling approach to
navigate the cognitive parameter space, looking for the peak of an
objective function under the constraints discussed above. Panel A
shows a two-dimensional cognitive parameter space, with the true
objective value (unknown to the agent) shown as the color temperature
for each combination of strategic control parameters (Ψ1, Ψ2). This
particular objective function is arbitrary and chosen for illustration
only. The peak of the objective is shown by the plus sign. Panel B
shows an example search trajectory of an agent who can only sample
noisy estimates of the underlying objective function and who has very
limited memory of their search history in this space. Specifically, at
any one point in the space, the agent samples the objective function
over a small window of trials and averages the estimates from that
window (as described in the context of Figure 3B). If the average
objective is better than that from the previously visited location, then
the search continues from here; otherwise, the agent returns to the
previous location. The algorithm is described in more detail in the
figure caption and in Appendix A. We assume the agent has some
(coarse) information about the objective value scale and is able
to perform at least an ordinal comparison between the current
location and the immediately preceding one (i.e., the memory load
is minimal). In the trajectory illustrated in Figure 4B, the agent
starts in a relatively low-value location, explores some other low-
value regions, but ultimately ends up in a good spot, quite close to
the peak objective value.
We do not claim that this algorithm is the algorithm that agents

use to navigate the cognitive parameter space. It is entirely possible
that the agent uses some other sampling algorithm or heuristic
strategy. Indeed, the precise nature of the sampling algorithm should
be an empirical question of interest. Sampling algorithms, like the

one discussed here and others developed in studies of perception and
cognition, provide a general framework for exploring this question
and can accommodate a variety of strategies (Bramley et al., 2017).
Our aim was to demonstrate the utility of the sampling approach as a
cognitively minimal search algorithm. A secondary aim was to use
this algorithm to generate trajectories in the cognitive parameter space,
so that we could assess the consequences of these dynamics in the
context of model-based analysis. We now turn to these consequences.

Estimating the Trajectory in Cognitive Parameter Space

At this point, it should be clear that in many psychological
paradigms, there is no single point in the cognitive parameter space
that is responsible for the observed data. Rather, as the agent tries to
achieve an objective, they will adjust the cognitive parameters that
are under strategic control, thereby moving around in this state
space, as illustrated in Figure 4B. In other words, the ground truth
parameters change over time. In turn, this change produces behavior
(i.e., data) that changes over time:MðDðtÞjψðtÞÞ. We now switch to
the perspective of the cognitive scientist who, through model-based
analysis, is looking to infer the latent mechanisms that gave rise to
the observed behavior.

Static Models Are Often Misspecified

For the sake of illustration, consider a cognitive parameter space
defined by the mean and standard deviation of a Gaussian distribution
(we deliberately frame this example in a generic, abstract format; we
present a cognitivelymore realistic example in the following subsection
“Capturing Parameter Dynamics”). Figure 4C shows a time series of
data, generated by the agent’s movements illustrated in Panel B, with
each data point yt ∼N ðμt , σtÞ. The agent initially generates
observations from a tight distribution centered around a value of
−2, but ends in a spot where they generate much more variable data
with a positive mean (hence the upward trend and “fanning out” of the
data). The modeler only has access to these data.

Standard practice in model-based analysis is to treat the data-
generating process as stationary and to estimate a single set of
parameters of a cognitive model, θ, from either a set of summary
statistics derived from the data or the time-unordered distribution of
data. Figure 4C shows the marginal distribution of the data on the
right-hand side. Suppose the modeler fits a Gaussian distribution to
these data. The posterior estimates for the parameters are shown in
Figure 4D as the violin plots on the right (see Appendix B for further
details). The means of these distributions are represented by the
filled triangle in Panel B. This simple demonstration highlights
several important points. First, note that the functional form of the
estimated model actually matches the ground truth at any one point.
However, it is clear that this model will not be a good fit when
applied to the overall distribution: The data are generated by a
mixture of Gaussians, with weights proportional to the number of
trials spent in each location of the parameter space. As a result, the
observed distribution (Figure 4C) has fatter tails, rightward skew
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5 This situation is more analogous to a modeler who can only generate
model predictions through simulation and does not have access to an analytic
likelihood. A standard solution in “approximate Bayesian computation” is to
estimate a synthetic likelihood, where multiple noisy estimates of the
likelihood are averaged for a given set of parameters (Hartig et al., 2011;
Palestro et al., 2018).
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and even a hint of bimodality (in the right tail). In other words,
exploration of the cognitive parameter space can give rise to data
that appears to come from a different functional form. Second, the
overall parameter estimates reflect this mixture, in that they are some
kind of average of all the locations visited by the agent. However, the
posterior mean or modal parameters were not actually adopted at any
one point (i.e., the filled triangle in Panel B does not coincide with

any of the visited locations). In this case, the estimated parameters
come reasonably close to the ones that were adopted most of the time
by the agent (in half the trials), but of course that need not be the case
if the agent explored more extensively. Third, it might be argued that
Bayesian parameter estimates will reflect the temporal structure in the
data implicitly in their posterior densities. That is, the posterior
density of a parameter might be expected to scale with the number of
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Figure 4
Navigating a 2D Cognitive Parameter Space With Noisy Objective Estimates
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Note. (A) An arbitrary 2D objective function. The peak of the function is marked with a +. The function corresponds to
the mean objective value at a given location (Ψ1, Ψ2). An agent sampling a given location will obtain a noisy estimate of
the objective around this mean. (B) An example trajectory from an agent following a simple sampling algorithm over the
course of N trials. For the sake of illustration, the parameter space is defined by the parameters of a Gaussian distribution.
At each location, the agent generates a data point drawn fromN ðμðtÞ,σðtÞÞ and obtains a noisy objective estimate around
the mean value shown in Panel A. These estimates are averaged over a small window of W trials. If the agent jumps, the
value at the new location is compared to the value at the previous location and the new location is “accepted” if the
objective estimate is better. The probability of a jump, π is inversely related to the estimated objective value, v̄, through:
πðv̄Þ = 1 − v̄

γ , 0 ≤ π≤ 1, where γ is the threshold objective value at which the jump probability drops to 0 (ensuring search
terminates when the estimated objective reaches some satisfactory value). The parameters of this simulation were: N =
100; W = 5; σobj = 25 (standard deviation around the objective); σjump = 1 (standard deviation in 2D of a bivariate
Gaussian jump distribution); γ = 100. The true maximum of the objective is shown by the plus sign. A weighted average
of all the locations visited is shown by the open triangle. The filled triangle (with 95% credible intervals) shows the
posterior parameter estimates based on the fit of a Gaussian distribution to the data generated by the agent. The color
temperature of the visited locations indicates the true, underlying mean objective value (not the noisy estimate) on the
same color scale as the objective in Panel A. (C) The time series of observations generated by the agent, along with the
marginal distribution. (D) Posterior parameter estimates for μ and σ from a particle filter (solid black line; ribbon shows
the 95% credible interval). The true parameter values are shown by the dark grey solid line underneath. The posterior
densities from the static model fit are shown on the right-hand side in each panel (the posterior means, shown by the dark
grey squares, correspond to the filled triangle in Panel B). The vertical black line inside the densities represents the
interquartile range (which is hard to see due to the tight posteriors). 2D = two-dimensional. See the online article for the
color version of this figure.
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trials in which that parameter was adopted by the agent. However, that
appears not to be the case. For instance, the agent spends half the trials
at μ ≈ 0.07, but the posterior density here is really low. Moreover, the
point of highest density corresponds to a location where no time was
spent. Therefore, the analyst would be hard-pressed to infer themixture
weights from the posterior densities.
Consider how the analyst might respond to this situation. We

know that behavior can change over time as participants become
familiar with a task (e.g., Heathcote et al., 2000; Logan, 1992;
Newell & Rosenbloom, 1981) and, therefore, we often include a
(brief) practice phase in our studies. The hope (and it is often just
that) is that by the time actual data collection starts, participants have
settled on a point in the cognitive parameter space and their
performance has stabilized. So the analyst may discard the initial
data, which in this particular example would work well if they had
decided (in advance) that the practice block should contain about 50
trials. However, we suspect that in many instances decisions about
practice trials are not that well informed and, in any event, there is of
course no guarantee that the agent will eventually settle on some stable
point in the cognitive parameter space (as more or less happens in this
example). Indeed, in many standard paradigms the variation in
behavior (e.g., RT) over the course of a block or the entire experiment
can be much larger than the effect of any experimental manipulation(s;
e.g., Dutilh et al., 2009; Gunawan et al., 2022). So setting aside the
inclusion of practice trials, and dealing with the data as they are in
Figure 4C, themodeler has fit a simpleGaussianmodel to the observed
data and notes that the fit is poor. A likely response is that they would
look for a more complex functional form that can accommodate
the data better, for instance, an ex-Gaussian or some other skewed
distribution. This model would undoubtedly produce a better fit, but is
clearly mismatched to the model that actually generated the data. As a
result, inferences drawn from the estimated model and its parameters
are not to be trusted.
Basically, we are dealing with a form of model misspecification:

The analyst tries to approximate the dynamic ground truth,
MðDðtÞjψðtÞÞ, with a static model, MðθjD′Þ, where D′ is a time-
unordered or summary statistics representation of the actual time
series of behavior D(t). In our example, the modeler initially
actually adopted the correct “basis function,” but attributed the
poor fit of the model to its functional form, rather than the
nonstationarity of the underlying data-generating process. As a
result, they were misled into adopting the wrong functional form
(e.g., an ex-Gaussian). Of course, it could be argued that the
modeler in this scenario should have explored their data better and
realized that behavior was nonstationary. Nevertheless, this
scenario is representative of common practice in model-based
analysis. For instance, evidence accumulation models are typically
fit to the marginal distributions of choice and RT data over trials
and modelers (including some of the present authors) often do not
consider temporal structure in the data (we highlight exceptions
below). Variance in the data introduced by parameter dynamics
will then have to be captured somehow, for instance, through
variation in the model architecture (e.g., adding noise components,
such as between-trial noise in drift rate) or in the parameter values
themselves (e.g., inflating existing noise components and/or pushing
parameters to “compromise” values that were never adopted). In this
way, a good model fit might be obtained, but at the cost of taking the
modeler further away from the ground truth.6

Capturing Parameter Dynamics

To capture the variation in the data-generating process (and the
resulting behavioral measurements) over time, we need to (a) consider
the temporal structure in the data, the fact that the data form a time
series of observations and (b) fit the time series withmodels that allow
for temporal variation in the parameters. Of course, there are many
models in cognitive science that produce or account for sequential
behavior, such as reinforcement learning models (Sutton & Barto,
1998). However, these models typically do so with a single static set
of parameters; rather, the variation in predicted behavior stems from
the dynamics of and/or noise in the input (e.g., nonstationarity in the
reward structure; Behrens et al., 2007). Our agenda here is to promote
assessment of the dynamics in the model parameters themselves. For
this purpose, it is useful to distinguish between the “core” cognitive
model that generates or predicts an observation at a particular point in
time, and a “meta” level of control that governs the way core model
parameters change over time (for early examples of this idea in
cognitive modeling, see Busemeyer &Myung, 1992; Vickers & Lee,
1998). For instance, in the example of Figure 4, the core or point-wise
observationmodel is a simpleGaussian distribution, the parameters of
which are controlled by aMCMC-like transition model. The question
is then how to make this transition model visible (Schumacher
et al., 2023).

The challenge for the analyst is to identify the sequence of hidden
states from the overall collection of observations. State space models
refer to the general class of statistical techniques for solving this
problem (Durbin & Koopman, 2012). Of most relevance here are
flexible methods that apply to non-Gaussian and nonlinear systems,
such as particle filtering (Doucet et al., 2001; Gordon et al., 1993;
MacKay, 2003; Speekenbrink, 2016). In particle filtering, the
assumption is that an observation yt is produced by the latent state at
this time, xt, and that the current latent state only depends on the
previous state (i.e., we can define a transition model that takes us
from the previous state to a new state).7 The current state is then
estimated sequentially with each incoming observation. A large
population of particles represents possible latent states that
generated the data. Particles associated with a high(er) likelihood
for the new data are propagated, whereas those that do not capture
the new data well are eliminated. In this way, the distribution of
particles can adapt when the data suggest a change in the latent
state. Given that we conceptualized the agent’s movements in
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6 As discussed in the previous sections and illustrated in Figures 3 and 4,
parameter dynamics may stem from participants exerting strategic control
(i.e., exploring the cognitive parameter space in order to achieve an
objective). However, other parameters that are under less strategic control
may also change with time (Dutilh et al., 2009; J. Zhang & Rowe, 2014), for
example, through perceptual learning (Dosher & Lu, 2017; Watanabe &
Sasaki, 2015) or fatigue (Ratcliff & Van Dongen, 2011). The grounding of
cognitive model parameters (and, indeed, the approaches discussed next) is
not restricted to capturing only the movements due to strategic control, but
can (and should) be applied to capture nonstrategic changes as well.

7 The latent state xt may or may not include all parameters of the cognitive
model we are trying to estimate. In many particle filtering applications, some
of the parameters are allowed to evolve over time, whereas others remain
constant (Liu & West, 2001). For our purposes, we consider the scenario
where the modeler allows for movement in the parameter space along all
dimensions, that is, xt = θt. Nevertheless, a strategy of allowing some
parameters to evolve and fixing others may be a good approach for
identifying the major dimensions of variation (or strategic control) over time.
We revisit this issue in the General Discussion section.
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cognitive parameter space as a single particleMarkovChain, adopting
a large population of particles to approximate the trajectory of the
agent is a natural fit.
Figure 4D illustrates the sequential parameter estimates from a

basic bootstrap particle filter (Gordon et al., 1993; Speekenbrink,
2016). Details for this method are given in Appendix B. The
posterior means for the parameter estimates are shown by the black
solid line (with 95% credible intervals). The initial estimates are
some way off, because at this point there is not yet enough data and
the estimates are driven by the prior (arbitrarily centered on μ = 0,
σ = 2.5). However, after about 10 trials, the particle filter estimates
track the underlying trajectory very well, even when there are
sudden larger jumps in the state space (e.g., for σ just before trial 50).
The root-mean-squared error (RMSE) between the mean particle
filter estimates and the underlying true values is much lower than
that between the static posterior mean and the true values (μ: 0.42 vs.
0.89; σ: 0.46 vs. 0.84).
The mixture-of-Gaussians example from Figure 4 tells a cautionary

tale of the inferential pitfalls associated with fitting a static model to
data from an agent who dynamically explores the cognitive parameter
space. However, most computational cognitive models have more
complex architectures, contain nonlinearities (e.g., decision thresh-
olds), behave nonlinearly in their parameters, and may have a mixture
of static and dynamic parameters. Therefore, it is important to assess
whether our observations generalize to a cognitively more realistic
setting. We have previously used an expanded judgment paradigm to
test whether and when people collapse their decision boundaries in
evidence accumulation models (Malhotra et al., 2017, 2018). In
this setup, a discrete sequence of binary evidence samples points
probabilistically toward one of two decision alternatives, and the
agent is set the objective of maximizing their reward rate. The
theoretically optimal “policy” (i.e., combination of decision threshold
height and gradient) may be derived for this task environment using
dynamic programming (Bellman, 1957; Malhotra et al., 2018; see
also Drugowitsch et al., 2012; Moran, 2015). This optimal dynamic
programming solution is a normative strategy—it does not consider
the constraints an agent actually faces when trying to adjust their
decision threshold online as they interact with the environment and
receive feedback. This paradigm is therefore a good test bed for
generating and identifying trajectories in cognitive parameter space
during a realistic (experimental) task.
Details of the task environment and simulated agents are given in

Appendix C. After each binary evidence sample, the agent makes a
probabilistic decision to wait for more evidence or commit to one of
the two alternatives. If they commit and their choice is correct, they
are rewarded; if they make an error they are penalized. The overall
amount of time is limited, so the agent will want to fit as many
correct trials into this limited period as possible—they have to
balance speed and accuracy. To do so, they can modulate the height
and gradient of their decision boundary, after estimating the reward
rate over a (small) window of trials. That is, the model assumes a
“meta” level of control that adjusts these parameters in pursuit of an
objective function.
Figure 5A illustrates three different simulated agents: a “stationary”

agent and two “nonstationary” agents who adopted the algorithm
described in “Sampling in cognitive parameter space” (see also
Appendix A). These trajectories may or may not be realistic (that is an
empirical question we leave for future investigation). For the
nonstationary agents, the “failure” to converge to the optimal policy

may be down to a number of reasons: The objective function allows
for a broad range of policies that generate reasonable reward rates;
noise in the reward rate estimates can lead the agents astray; the
sampling algorithm itself is stochastic. For the present purposes,
the main thing that matters is that we have three agents who vary in
the extent to which they explored the cognitive parameter space.

The core model has three parameters: threshold height α, threshold
slope β, and decision noise η. Decision noise allows for a realistic
amount of stochasticity in behavior—it allows for different actions
given the same amount of accumulated evidence at the same time.We
fixed this parameter in our simulations to a constant value (over time
and between agents), to create a scenario in which the ground truth
model contained a mix of dynamic and static parameters. Of course,
the modeler does not know a priori which parameters evolve and
which ones do not. This situation is a common occurrence in many
cognitive modeling applications. Figure 5B illustrates the estimates
for each of the three model parameters. On the right-hand side of each
panel, the violin plots show the posterior densities of the parameters
estimated from a static model (i.e., a single set of {α, β, η} for the
entire run of trials). When the agent is stationary, these estimates are
unbiased and precise. For the nonstationary agents, as in our earlier
example (Figure 4D), the static estimates to some extent reflect a
weighted average of the threshold parameters that were adopted by
the agent. However, the noise parameter is greatly overestimated. The
reason for this error is obvious: Movement in the latent state space
introduces variability in behavior and the static model can only
capture this variability by increasing the noise component.

Now consider the particle filter estimates. For the stationary
agent, the estimates are concentrated around the true values, albeit
with much greater variance compared to the static estimates. The
nonstationary agents are tracked very well with the particle filter.
There are some periods where there seems to be some parameter
trade-off (e.g., for the limited agent toward the end, higher intercepts
are compensated for by steeper gradient). Such trade-offs are
common in many computational cognitive models (Moran, 2016;
Spektor & Kellen, 2018) and can also occur for the static fits (e.g.,
for the extensive agent, the overall intercept estimate seems to be
underestimated and the gradient overestimated). More importantly,
the particle filter adequately captures the level and constancy of the
noise. Figure 5C summarizes the results by plotting the RMSE for
the three agents and parameters. Unsurprisingly, the advantage
of the particle filter is more pronounced the greater the movement in
the state space. Overall, there appears to be an asymmetry in the
consequences of model misspecification: when the data are
generated by a stationary agent, the cost of allowing parameters to
vary over time is not great (although the estimates are clearly much
less precise); when the data are generated by a nonstationary agent,
the cost of a static approximation can be severe. In summary,
allowing for parameter dynamics not only enables identification of
the agent’s journey in cognitive parameter space (or the near
absence of one), it also guards against erroneous inferences that
can arise when a static model has to capture variability in behavior
that stems from nonstationary latent states.

General Discussion

Computational cognitive modeling is increasingly ubiquitous in
psychology, neuroscience and psychiatry. A model-based analysis
of behavior is used to provide mechanistic explanations of empirical
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phenomena such as experimental effects, neural activation and
individual or population differences. This type of analysis can
generate important insights, such as those listed in Table 1. However,
we have argued that more complete explanations should also address
how and why model parameters take on the values that they do. To
address these questions, we need to consider the cognitive parameter
space—a latent state space formed by the parameters of the (ground
truth) model that generates the data—from the perspective of the
agent while they are engaged in a task. The agent may be trying to
achieve some objective (either one they have formulated themselves
or one that is imposed by the experimenter), but face several
difficulties. First, agents are unlikely to have a good representation of
how their position within the cognitive parameter space maps to the
objective value. Second, the (local) information they obtain about
the objective is probably highly uncertain. Third, their room for
maneuver in the state space is limited by various biophysical,
environmental, and cognitive constraints. Under these circumstances,
the agent may be feeling their way around the task, trying to find a

region in the state space where they meet their objective. We have set
out a program of grounding cognitive model parameters that involves
a mix of empirical and computational work to identify the constraints
that the agent operates under, the objective(s) they adopt, the
information available to them to estimate their objective online over
the course of task performance, and the mechanisms by which they
move around the state space to achieve their objective.

Part of this endeavor involves an assessment of the agent’s
behavior from one moment (trial) to the next, taking into account the
feedback they receive from the environment. This perspective is
often missing from a model-based analysis, where a single set of
parameters is typically estimated on the basis of a set of summary
statistics or time-unordered representation of the data. At best, these
estimated parameters provide a good reflection of the average
position of the agent over the course of the task. However, in most
cognitive models, the relation between parameter values and
predicted behavior is often highly nonlinear, and there is no
guarantee that the average position of the agent may be recovered
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Figure 5
Trajectories of Three Simulated Agents in an Expanded Judgment Paradigm, Along With Static and Dynamic
Parameter Estimates
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all (by design). The two nonstationary agents adopted exactly the same sampling algorithm, but started off in different places and
ended up with quite different trajectories (limited and extensive exploration). The reward rate scale corresponds to the mean reward
rate averaged over all visits (although the agent only ever estimates the reward rate over a window W = 5 trials during the
experiment). Themeanweighted position is shown for each agent by the open symbol. The optimal policy is indicated by the+. (B)
Parameter estimates derived from a static model fit (violins on the right in each panel) and from a particle filter. Conventions as in
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from the time-unordered data. Moreover, the movement of the agent
in the state space introduces variability in behavior over time that
will have to be absorbed somehow in the static model parameters.
As our simulations show (see Figures 4 and 5), this variability can
lead to poor model fits, seriously biased parameter estimates and
inferential errors. A poor fit might lead the modeler to consider
alternative static models (with additional mechanisms or more
complex functional form) that may do a better job in capturing the
average behavior, but that nevertheless take the analyst further away
from the nonstationary ground truth.

Related Approaches

We are by no means the first to discuss these topics. The recency
of many citations in the sections above suggests that a good deal of
relevant work has been and is being conducted. For instance, there is
burgeoning interest in capturing the dynamics of behavior by
modeling the time-dependence of parameters of either descriptive,
statistical or cognitive models (e.g., Gunawan et al., 2022; Kunkel
et al., 2021; Miletić et al., 2021; Schumacher et al., 2023). Hidden
Markov Models are being used to identify a small set of latent states
that gave rise to the observed data—with participants switching
between a limited number of cognitive “regimes” (e.g., on/off-task;
Gunawan et al., 2022; Kunkel et al., 2021; Visser, 2011).
Alternatively, when parameters change smoothly over time (e.g.,
as a result of practice or fatigue), the temporal trend may be captured
by some simple parametric form (e.g., polynomial; Gunawan et al.,
2022). The challenge is then to estimate the parameters of this
functional form that, in turn, controls the core model parameters at
any one point in time. Part of our contribution is to place recent work
like this in the context of a wider research program of grounding
cognitive model parameters and open up avenues for future research.
In that regard, estimating these trajectories is just a starting point—they
still need to be related to the substantive psychological questions about
the constraints, objectives, and mechanisms involved in navigating
cognitive parameter space.
In our simulations, we adopted a particle filter approach for

several reasons. First, most computational cognitive models are
highly nonlinear and non-Gaussian, which is the domain particle
filters are designed for. Second, particle filtering is an inherently
flexible approach, so that we need not commit to a fixed number of
latent states in advance (as in Hidden Markov Models) or to a
particular fixed functional form of trajectory through the state
space (e.g., polynomial). Third, and most importantly, we can
think of the agent as a single particle MCMC chain in cognitive
parameter space. Using a population of particles to estimate their
trajectory therefore seems like a natural choice.
Nevertheless, ideally we would include the cognitive mechanisms

that underlie the trajectory in the state space into our models directly.
One example of this approach is to have a subset of parameters
controlled by some learning algorithm that responds to feedback in
the environment and updates parameters accordingly (e.g., drift rates
or boundary separation in evidence accumulation models; Fontanesi
et al., 2019; Lee et al., 2014; Ludwig et al., 2012;Miletić et al., 2020,
2021; Pedersen et al., 2017). Similarly, it may be possible to extend
our cognitive model with samplinglike mechanisms for exploring
the cognitive parameter space. For instance, the local sampling and
comparison routine we outlined as a cognitively minimal search
algorithm, is characterized by a number of parameters (e.g., the scale

of the jump distribution, the window of trials over which the objective
is estimated). Recently, Schumacher et al. (2023) developed a general
framework for estimating the parameters of a transition model along
with the core model parameters that determine the response at a given
moment in time. This framework is applicable to a wide variety of
possible transition models, and it is conceivable that wemight specify
more cognitively plausible transition models (and test between them).
We see this challenge as an important and exciting problem to be
addressed in future work.

There are also long-standing efforts to ground model parameters
through a rational or computational analysis of cognitive capacities
and the world they operate in (Anderson, 1990; Lieder & Griffiths,
2020; Oaksford & Chater, 2007). Some of our arguments echo these
approaches. Specifically, a computational or rational analysis
requires that we consider the task objective and the information
available in the environment for the agent to pursue that objective.
Importantly, there is a strong normative commitment to adaptive
objectives and the rational use of information—a focus on what the
agent should do given the task, the environment in which they operate
and, potentially, their cognitive constraints (Anderson, 1990; Lieder &
Griffiths, 2020). Our analysis encourages researchers to recognize the
variety of objectives that might be adopted, to investigate the actual
objectives that were adopted, and to model the cognitive mechanisms
by which these (variable) objectives were pursued (see also Rahnev &
Denison, 2018, for similar arguments in the specific domain of
perceptual decision making). The ability of humans to make up their
own objectives, and the mechanisms by which they pursue those
objectives, are fundamental to their psychological makeup. Endowing
cognitive models with the capacity to generate this variability is a key
step toward a better understanding of variation in cognition and
behavior between different individuals and over time.

Challenges and Pragmatic Considerations

Grounding-computational cognitive models involves a form of
“zooming out”: going beyond the core model and interrogating the
systems that provide input to this core and/or control the way the core
model adapts over time (e.g., to achieve some objective). Zooming
out is likely to expand the model with additional mechanisms (e.g., a
perceptual front-end; sampling mechanisms), a “metalevel” of input
and control. Such expansion raises a number of questions, obstacles
and objections. Additional mechanisms could make models more
flexible and more difficult to falsify. Indeed, it can already be difficult
to estimate parameters accurately and reliably for the core model, and
expanding this model will make it even harder. A natural question is
then how far to take this model expansion.

Model expansion brings with it major challenges in parameter
estimation and model selection. First, there is the bias–variance
trade-off, clearly visible in Figure 5B. When the ground truth is
nonstationary, estimating a single, static set of parameters yields
more precise estimates: The posterior densities tend to be narrower
than the 95% credible intervals around the time-varying estimates.
However, the static parameter estimates are precise, but wrong:
They can be a poor reflection of the system at any one point in time
and/or display a large amount of bias (e.g., inflated noise estimates).
The time-varying estimates track the temporal evolution in the latent
states, so that this variation is not accommodated through biasing
other model parameters. When the ground truth is stationary, the
difference in estimation precision is even more pronounced, although
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in this case both the simple static and the time-varying estimates show
little bias. What level of bias and variance is acceptable depends on
the modeling goals. For instance, bias may be acceptable if the
primary aim is the detection of some experimental effects and the
model is simply a vehicle for extracting a more sensitive dependent
measure from multidimensional data (van Ravenzwaaij et al., 2017).
However, when the aim is to understand the underlying mechanisms
that generated the data better, the loss in estimation precisionmay be a
price worth paying for avoiding bias and gaining insight into the way
participants move through the state space.
Second, many cognitive models have a “scaling constraint” in

that parameters can only be estimated up to a scale factor (i.e., may
be multiplied by a common factor to produce equivalent predictions;
Donkin et al., 2009; van Maanen & Miletić, 2021). To ensure the
model and its parameters are identifiable, we typically fix one (or
more) parameter to a constant, which sets the scale for the remaining
parameters. For instance, in the DDM, the within-trial noise is often
fixed arbitrarily. In a model-based analysis where we seek to explain
some target phenomenon (e.g., experimental effect), the choice of
scaling parameter can influence which of the free parameters covary
with the target phenomenon (van Maanen & Miletić, 2021). The
same problem may arise in the context of estimating time-varying
parameters. In particular, suppose there is true variation in the
parameter we use to fix the scale of the model—this variation will
then have to be absorbed by one or more parameters that are allowed
to vary over time. As a result, we would introduce spurious dynamics
in model parameters that may look like strategic exploration of the
cognitive parameter space.
Preliminary simulations (reported in Appendix C—scaling con-

straint) of the expanded judgment paradigmwe used here, confirm that
such spurious dynamics can occur: When data are generated with a
time-varying scaling parameter, and this parameter is fixedwhen fitting
the model, its temporal variation is partly reflected in other model
parameters. To some extent, this problem may be regarded as one of
model selection. Any model-based analysis requires decisions to be
made about which parameters are free to vary, which parameters are
estimated but held constant, and which parameters are fixed as scaling
constants. These decisions are no different when we consider strategic
(or otherwise) adaptation of model parameters over time. Different
configurations of time-varying, constant-but-free and fixed parameters
instantiate different models that may be compared (e.g., in their
predictive accuracy; see Appendix C—scaling constraint for an
example). However, this issue is not just a model-selection problem.
Deciding on the set of model instantiations (i.e., parameter
configurations) to select between, is ultimately a theoretical judgment
call. A choice of scaling parameter has to be justified theoretically,
ideally with independent empirical support. Considering the cognitive
parameter space from the perspective of the agentmay be helpful in this
regard: If a parameter is to be fixed at all, choose one that is strongly
constrained and over which the agent has little strategic control.
Third, if we take movement in cognitive parameter space

seriously, it is clear that a wide variety of trajectories are possible
(e.g., the two nonstationary agents in Figure 5A). It is likely that
participants will start off at different points in the state space, as a
result of their own motivations, background knowledge, history
with broadly similar tasks, and their own conceptualization of what
the task is (Szollosi et al., 2023). Once you take into account the
possibility of different transition models, noise in the objective
estimates, and stochasticity in the transition model, it will be

extremely difficult to disentangle these many sources of variability.
There is no single approach to deal with these challenges, but our
article suggests a number of possible empirical and computational
avenues to explore (e.g., setting clear task objectives, identifying
objectives that were actually adopted). At least at a practical level,
there are various tools for estimating individual trajectories, as
demonstrated by our own simulations (see Figures 4 and 5), and by
other authors recently (Gunawan et al., 2022; Schumacher et al.,
2023). The estimated trajectories may then become the data of interest
for the development and tuning of more cognitively principled search
algorithms. For instance, if an estimated trajectory suggests that a
participant tends to step in the same direction after a previous move
improved their objective value, that behavior would suggest some
form of hill-climbing (Bramley et al., 2017; Busemeyer & Myung,
1992); however, if they took very large steps and behavior was
uncorrelated from one epoch to the next, that might suggest a much
more random search process, such as independent sampling. In any
event, just because identifying individual trajectories in cognitive
parameter space is a formidable challenge, pretending that they do not
exist is likely to lead us down inferential blind alleys.

Aside from the challenges in estimating trajectories in the state
space, a reasonable question is how we stop model complexity
spiraling out of control. If we expand a core model with higher level
mechanisms that control the ones lower down, those control
mechanisms themselves may have parameters in need of explana-
tion. How many layers of control do we build? In our view, the
correct level of explanation should be determined by the questions
that a researcher wishes to answer. Some metalevel model will be
required to answer questions about fine-grained behavior, such as
how participants navigate cognitive parameter space in order to meet
some objective. It is entirely conceivable that interesting questions
can be asked about the mechanisms at this metalevel, such as the
generality of the transition model across different task domains, the
flexible tuning of its parameters (e.g., scale of the jump distribution),
and so forth. We certainly do not advocate an extensive regress of
meta-meta-… -level models and complexity for complexity’s sake.
At some (meta-meta-… -)level, the higher level questions may no
longer be interesting, or we may simply lack sufficiently diagnostic
data that speak to these questions. However, we hope to have
persuaded the reader that there is great scope for expanding model-
based analyses to incorporate at least one layer of metalevel
processes.

Finally, trying to understand the trajectories in cognitive
parameter space implies a shift of focus in the development of
our theories and models. Current model-based practice typically
aims to capture some average behavior over the course of a
single, specific task. We invite the modeler to take the view of the
participant navigating that task, from one moment to the next. This
perspective entails a focus on the mechanisms by which cognition
and behavior evolve over time and adapt to a set of task demands
(Bramley et al., 2023; Donkin et al., 2022). Typically, participants
are feeling their way through a task, with little knowledge of how
their position in the cognitive state space influences the objective
they are looking to achieve. As a result, different participants will
generate very different trajectories in the state space and produce
very different (average) behaviors. Returning to the two agents
illustrated in Figure 5A, the static parameter estimates suggest very
different strategies (policies) for solving the task. At the same time,
at the higher control level, the agents’ strategies were exactly the
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same (by design in this instance). They had exactly the same
objective and used exactly the same sampling algorithm to explore
that objective. As cognitive scientists, we are often interested in
robust invariances that generalize across environments, tasks, and
people. We speculate that it is at the metalevel of control that many
interesting cognitive invariances will be found.
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Appendix A

Local Sampling and Comparison Algorithm

Here, we provide a more detailed description of the local
sampling and comparison algorithm used to generate trajectories in
the cognitive parameter space (Figures 4 and 5 in the main text). The
objective function used for Figure 4 is arbitrary and defined as:

f ðΨ1,Ψ2Þ = A exp

�
−

1

2ð1 − ρ2Þ ×
ðΨ1 − μΨ1

Þ2
σ2Ψ1

− 2ρ

×
ðΨ1 − μΨ1

ÞðlnΨ2 − μΨ2
Þ

σΨ1
σΨ2

+
ðlnΨ2 − μΨ2

Þ2
σ2Ψ2

�
, (A1)

with the following constants: A = 100; μΨ1
= μΨ2

= 0.5; σΨ1
= 1;

σΨ2
= 1.5; ρ = 0.75. The objective function for the expanded

judgment paradigm simulated for Figure 5, is determined by the
parameters of the behavioral task, given below in Appendix C.
Agents are initialized at random points in the cognitive parameter

space. At any one point, the agent interacts with the environment and
estimates the objective value Vwith some uncertainty, that is, p(V =
v). To reduce the uncertainty, the agent integrates the objective
estimates over a window of W trials, to obtain v̄. With the total
number of trials, N, being limited, the sampling window should be
small enough to allow for some exploration, that is, W ≪ N.
If the estimated objective value, v̄, afterW trials is low, the agent is

likely to jump to a different location in the space. If the value is high,
the agent is likely to stay in the current location and perform another
set of W trials. Specifically, the probability of a jump, π depends on
the estimated objective value through: πðv̄Þ = 1 − v̄

γ, 0 ≤ π ≤ 1,
where γ is the threshold objective value at which search can be
stopped. The precise form of this function is not too important and
the agent does not need precise knowledge of the maximum attainable
objective value. What matters is that they have some crude sense of
whether a location is good or bad, and that this estimate bears an
ordinal relation with the true objective value. Whether the agent
jumps is a Bernoulli random sample with p = πðv̄Þ.
If the agent jumps, a “proposal” location is drawn from a

symmetrical transition distribution around their current location; in
other words, the jump is essentially random, but likely to be close
by.We formalized the transition distribution as amultivariateGaussian,
but again the precise implementation is probably not too important.We
could have chosen a Lévy flight, a uniform distribution or some other
form; the scale of the distribution is much more important, so that the
jumps are of an appropriate size. After a transition, the agent samples
the objective forW trials at the new location. If the estimated objective
is better than the estimate from the previous location, the proposal
location is “accepted” and search continues from here. If the estimated
objective at the new location is worse than the estimate from the
previous location, the proposal location is “rejected” and the agent
reverts to the previous location. After an accept/reject decision, search
continues as before: jumping with a probability that depends inversely
on the estimated objective value at the new location (if the proposal was
accepted) or the previous location (if the proposal was rejected).
One way an agent may simplify the search process is through

satisficing. This behavior is controlled by the stopping criterion

γ, which controls when the jump probability goes down to 0.
Satisficing then involves setting γ to a value below the peak of the
objective function. Again, the precise implementation details do not
matter a great deal; the key ingredient is that agents have some way
of sensing that a particular objective value is good enough and that
this sensation drives down the probability of jumping. In our
simulations, γ was always set to the true maximum of the objective
(i.e., 100 for the arbitrary objective from Figure 4A; the peak reward
rate derived from the dynamic programming solution in Figure 5). In
other words, our agents were maximizers. Note that as a result of
noise in the objective estimates, it can (quite easily) happen that the
estimated value at a given location exceeds the stopping criterion. In
this case, the jump probability is set to 0 and the agent does not
move. However, the next window of trials at the same locationmight
easily generate an objective estimate lower than γ, in which case
there is some nonzero probability of a transition. Therefore, noise in
the objective values may result in the agent moving away from a
good (or even optimal) spot.

For the example trajectory shown in Figure 4B, the agent arrives
at a good spot on the surface and is able to spend just over half their
time there. However, this outcome is not guaranteed: every run of
the algorithm will produce a different result, as demonstrated in
Figure 5 (top row). The performance of the algorithmwill depend on
its parameters (W, σjump, γ), the nature of the objective surface and
the amount of noise in the objective estimates. Variation in some or
all of these components will produce variation in behavior over time
(as search progresses) and variation between individuals.

The algorithm described here is similar to standard MCMC
sampling algorithms such as Metropolis–Hastings, except that: (a) it
operates on estimates derived from several (i.e.,W) trials rather than
just a single evaluation of the objective (target); (b) a proposal is
generated and evaluated with a (jump) probability that is inversely
related to the estimated value of the objective; and (c) the agent
simply rejects proposals with a lower estimated objective value than
the previous position (rather than accepts them with some
probability). The first modification ensures that the agent has a
more reliable estimate of the objective (analogous to the synthetic
likelihood approach in approximate Bayesian computation; Hartig
et al., 2011; Palestro et al., 2018). The second modification is
necessary, because we assume that the agent actually has to move to
a new location and interact with the environment in order to gain
information about the objective at that location (i.e., they cannot
estimate the objective elsewhere through, say, mental simulation).
Such a move is potentially costly, because the new location may
have a lower objective value and the agent will have to spend W
trials there to find out. Therefore, rather than always generating
proposals (as in standard MCMC), we want to do so adaptively,
depending on how good or bad the current location is. The third
modification is appropriate in this setting, because the agent’s goal is
not to sample the full objective function with a probability that is
proportional to its value—the goal is simply to find the best (or good
enough) location and spend as much time there as possible.

(Appendices continue)
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Appendix B

Static and Dynamic Parameter Estimates for the Mixture-of-Gaussians Example

For the simple model used to generate Figure 4 in the main text,
we used the following procedures to estimate parameters.

Static Parameter Estimates

For the static model, we simply need to estimate the mean and
standard deviation of a Gaussian distribution, that is, y∼N ðμ, σÞ.
We adopted the following priors for the parameters μ and σ:

μ∼N ð0, 1Þ
σ2 ∼ inv − χ2ð5, 5Þ, (B1)

we approximated the posteriors through sampling, using the Stan
probabilistic programming language (Stan Development Team,
2024b) and the RStan interface (Stan Development Team, 2024a).
Parameters were bound to the intervals μ∈ [−3, 3] and σ∈ [1e-6, 5].
We used four chains with 1k postwarm-up iterations, giving 4k
posterior samples for each parameter.

Particle Filter

Latent states correspond to the time-evolving parameters of the
model: For each trial, we assume there is an underlying state θt= {μt,
σt}. We implemented a basic bootstrap particle filter to approximate
the posterior distribution of latent states at each time point (Durbin &
Koopman, 2012; Gordon et al., 1993; Speekenbrink, 2016). We
used J = 2,000 particles. The initial locations of the particles are

drawn from a bivariate Gaussian distribution with prior mean
μ0 = {0, 2.5} and unit variances Σ0 = I, where I denotes the identity
matrix. Particles are assigned weights of wð jÞ

t = J−1. For each
incoming observation yt, with t = 1, … , T, the distribution of
particles then evolves as follows:

• Propagate particles through a transition distribution,

pðθð jÞt jθð jÞt− 1Þ. We chose a bivariate Gaussian with Σtrans =
diag(0.5, 0.5).

• For j = 1,… , J, compute the likelihood of the observation,
that is, pðytjθð jÞt Þ.

• Weight update: w
∼ ð jÞ
t = wð jÞ

t− 1pðyt jθð jÞt Þ. This step assigns
higher weights to particles that are more consistent with the

new observation. Normalize the weights: wð jÞ
t = w

∼ ð jÞ
tP

J
j= 1

w
∼ ð jÞ
t

.

• To avoid weight degeneracy, resample the weights if they are
concentrated on too few particles, that is, if 1P

J
j= 1

ðwð jÞ
t Þ2 < 0.5J.

Resampling eliminates particles with low weights and
replicates particles with higher weights. If the resampling
step was performed, set wð jÞ

t = J−1.

Particles were constrained to the intervals μt∈ [−3, 3] and σt∈ [1e-
6, 5]. At each iteration, the collection of particles and their associated
weights may be used to compute various (weighted) quantities of
interest. In Figure 4D, we show the means, along with the 2.5th and
97.5th percentiles, of the marginal posteriors.

Appendix C

Expanded Judgment Task Simulations

Task Environment

The agent is presented with a sequence of binary evidence
samples, xwith xi∈ {−1, 1}. That is, each evidence sample points to
one or the other decision alternative, with a consistent bias during
any one trial, that is, xi∼Bernoulli(0.5 ± ε). The agent terminates the
evidence stream by committing to a decision alternative. The
accuracy of that decision determines whether they are rewarded or
penalized. The next trial then starts after a delay. If there is time
remaining in the task, the next trial is then presented. For the agents
simulated in the current article, we adopted the task parameters listed
in Table C1.

Decision Model

Malhotra et al. (2018) described the optimal decision policy for
this task, derived through dynamic programming (Bellman, 1957).
This policy prescribes what the agent should do for each possible
combination of time (number of evidence samples observed) and
accumulated evidence. A given decision policy may be represented
as a tripartite division of the (time, evidence)-space: a region where
the agent should go for option A+, a region where the agent should
go for option A−, and a region in between where the agent should
wait for further evidence. The boundaries separating the “go” from

the “wait” regions are symmetric andmay be summarized conveniently
by an intercept and slope. Let α and β represent, respectively, the
intercept (in evidence units) and gradient (in radians) of the positive
decision boundary. The long-run expected reward rate can then be
computed for each (α, β) combination (Malhotra et al., 2017). This 2D
objective function, given the current task parameters, is illustrated in
Figure C1A.

Our simulated agents essentially adopt this model for making
their decisions. On a particular trial t, their (positive) evidence
boundary at the kth sample is given by: b+(k)=max(αt+ k tan βt, 0);

Table C1
Parameters of the Simulated Expanded Judgment Task

Parameter Value

Interstimulus interval 0.2 s
Intertrial interval (correct) 3 s
Intertrial interval (error) 3 s
Monetary reward (correct) 1
Monetary penalty (error) −2
Evidence bias, ε 0.2
Within-trial response deadline 10 s
Task duration 480 s

(Appendices continue)
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the negative boundary is simply b−(k) = −b+(k). Within a trial, the
agent integrates the evidence perfectly, so that the decision variable
after k samples is: zk =

P
k
i= 1 xi. However, to introduce a realistic

amount of variability in behavior, we assume that the agent makes a
probabilistic “wait”/“go” decision after each sample. That is, they
draw a sample from a Gaussian distribution centered on zk:
z* ∼N ðzk , ηÞ, where η corresponds to the decision noise. If z* ≥
b+(k), the agent goes for option A+; if z* ≤ b−(k), the agent goes for
option A−; if b+(k) = b−(k) = 0, a random choice is made between
A+ and A−; otherwise, the agent waits for the next evidence sample.
The decision noise parameter generates variability in choice and
decision times—it ensures that the agent does not always make the
same choice when presented with the same accumulated evidence at
the same point in time. This simple decision model is characterized
by three parameters: θ = {α, β, η}.

Navigating Cognitive Parameter Space

Our simulated agents have two parameters under strategic
control: the height and gradient of their decision boundary. Decision
noise is constant and set to η = 1 throughout. Figure C1A shows the
long-run expected objective values across this 2D cognitive
parameter space for an agent without any decision noise. There
is a broad ridge in this space where good reward rates may be
obtained: Higher boundaries (which would slow people down) may
be compensated for by having them collapse more steeply (which
forces a decision by effectively imposing a deadline; Hawkins &
Heathcote, 2021). Each agent is initialized in a random position
within the cognitive parameter space, with α ∈ [0, 25] and β ∈
[−1.047, 0.087] radians. However, they never really experience the
long-run expected reward rate for a given threshold height and
gradient. Aside from the particular decision policy adopted, the
experienced reward rate depends strongly on the stochastic evidence
sequences that are presented, the amount of decision noise and the
window over which the agent estimates the reward rate.
Figure C1B and C1C give an indication of the variability in

reward rate an agent might actually experience when estimating the

reward rate from a window of W trials. Panel B shows the
experienced reward rate across the cognitive parameter space with
W = 5 trials. Clearly, the globally “true” optimal policy (marked
with a +) is not necessarily optimal for a particular window of trials.
Panel C shows the distribution of reward rates experienced for
repeated windows of W trials at the same location (in this case, the
globally optimal location). The long-run expected reward rate is
indicated by the horizontal dashed line. We show these distributions
for a range of window sizes. As expected, larger windows yield
estimated reward rates that are more tightly clustered around the
long-run expected value. However, these simulated agents generally
performed between 100 and 300 trials over the course of the
experiment, so a window of 50 trials would not allow for much
exploration. The variability in experienced reward rate (particularly
for smaller, more realistic window sizes) is very pronounced and
will make it extremely difficult to find the optimal policy in a limited
duration (Evans & Brown, 2017; Malhotra et al., 2017).

We are not so much concerned with whether agents have sufficient
information to find the optimal position in the cognitive parameter
space. Rather, our aim was simply to generate trajectories in the state
space and assess the resulting parameter estimates. To generate the
trajectories for the nonstationary agents shown in Figure 5, we
followed the local sampling and comparison routine described in
Appendix A. Specifically, we adopted the following parameters for
the algorithm:W = 5; the standard deviation of the jump distribution
was set to 10% of the permissible range of the parameters, that is,
Σjump = diag(6.25, 0.013) (for α and β, respectively; note these are
diagonal variances); γ = 0.036 (close to the true optimal reward rate).
The stationary agent was given a random (initial) position, just like the
nonstationary agents, but was simply not allowed to move.

Parameter Estimation

Static Parameter Estimates

Given the decision model described above and given a particular
decision boundary and accumulated evidence after sample k, the
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Figure C1
Reward Rates in a Simulated Expanded Judgment Paradigm
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Note. (A) Long-run reward rate from dynamic programming. (B) Noisy reward rates estimated over a window of five
simulated trials. At each point in the state space, agents were presented with the same (initial) sequence of evidence
samples. Due to differences in the policies, these samples will be distributed differently across trials. For instance, agents
who sample more (e.g., due to a high intercept) will see evidence samples that were never seen by agents who sampled
much less (e.g., due to a low intercept). (C) Distribution of reward rates over 1,000 windows of varying sizes. See the
online article for the color version of this figure.

(Appendices continue)

GROUNDING COMPUTATIONAL COGNITIVE MODELS 27



T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

probability for the three possible actions a ∈ {A+, A−, wait} are:

pða = A+Þ = 1 −Φðb+ ðkÞ, zk , ηÞ
pða = A−Þ = Φðb− ðkÞ, zk , ηÞ
pða = waitÞ = 1 − pða = A+Þ − pða = A−Þ, (C1)

where Φ denotes the cumulative Gaussian distribution function. The
likelihood of an observed sequence ofK actions on trial t is now simply:
Lt =

QKt
k= 1 pða = a*k jθÞ, where a*k indicates the chosen action after

sample k. Across the entire set of trials t = 1, … , T, likelihoods may
combined through: L =

Q
T
t= 1 Lt . As usual, it is more convenient

to compute the log-likelihood: lnL =
P

T
t= 1

PKt
k= 1 ln pða = a*k jθÞ.

We adopted the following priors and parameter transformations:

α*, β*, η* ∼N ð0, 1Þ
α = expðα* + 1.5Þ
β = 0.5β*

η = expðη* + 1Þ: (C2)

For α and η, the prior and subsequent transformation result in right-
skewed distributions, bound at 0 from below and with most of their
mass between 0 and 10 (with a longer tail for α). For β, the prior is
Gaussian and centered on a gradient of 0, that is, a flat decision
boundary. Posterior densities for the parameters were again
approximated using Stan, using four chains with 5k postwarm-up
iterations. After thinning the chains by a factor of 5, we were left with
4k posterior samples for each parameter.

Particle Filter

We adopted the perspective of a modeler who does not know
which parameters change over time and which ones do not. So all
parameters were allowed to evolve: θt = {αt, βt, ηt}. We used the
bootstrap particle filter described in Appendix B, again with J =
2,000 particles. Initial particle locations were drawn from a
multivariate Gaussian prior with μ0 = {5, 0, 2} and variances Σ0 =
diag(25, 0.16, 9). The prior needs to be wide enough so that there
will be some particles that account for the early data. The transition
distribution was also a multivariate Gaussian, with variances Σtrans=
diag(1, 0.0025, 0.04). The scale of this transition distribution
determines how quickly particles can adapt when there has been a
change in the latent state (i.e., if particles can only move a small
amount, it will take a long time to adapt to a large jump in the state
space). Parameters were constrained to the intervals αt ∈ [0.01, 25],
βt ∈ [−1.05, 0.175], and ηt ∈ [0.01, 5].

Scaling Constraint

As discussed in the main text, many cognitive models can only be
identified up to a scaling constraint. Here, we consider a situation in
which the parameter we use to fix the scale of the model, actually
varies over time. At first sight, this problem might appear less

pressing for the expanded judgment paradigm and model we have
used as our test bed. The reason is that the model operates on the
actual evidence samples presented to the agent (i.e., binary samples,
xi ∈ {−1, 1}), which anchor the scale of the parameters. However,
the assumption that the agent integrates the evidence as is, effectively
implies that they apply a gain of λ = 1 when translating the external
evidence to an internal representation. Alternative values for the gain
may be adopted without altering the model predictions, by scaling the
other model parameters that can be represented in evidence units (i.e.,
the threshold height and noise).

We simulated a scenario in which data are generated with a time-
varying gain (periodic switches between λ = 1 and λ = 2). This
temporal pattern was unrelated to strategic exploration of the cognitive
parameter space. We simply aimed to have a strong, recognizable
temporal signature to detect in the parameter estimates. Figure C2A
illustrates particle filter estimates for two models that differ in the
choice of constant scaling parameter, fit to the data from the same
simulated agent. In both cases, the scaling parameter is set to a value
that does not match the ground truth. The left column shows the
estimates when we fixed the gain as a scaling parameter to a value of
λ = 0.5. The low adopted value of the gain scales the estimated
threshold height and the noise: the effects of a larger gain in the data
generation (i.e., faster evidence accumulation) can only be
accommodated by lowering the distance to the threshold and reducing
the noise. Moreover, the fluctuations in the ground truth gain seem to
be compensated for by fluctuations in the threshold height (most
clearly visible from about trial 175 onward). Note that in other
situations (models, tasks), the temporal variationmay be absorbed by a
combination of parameters, which would inflate their covariance. The
right column of Figure C2A shows a fit in which we have selected the
decision noise as a scaling parameter, with η = 0.5. Here, we recover
the temporal fluctuation in the gain accurately, which in turn reduces
the periodic fluctuation in the threshold height. The close fit with the
ground truth should not be overemphasized; with different
(misspecified) values for η, the model misses the ground truth.
However, importantly, the parameter estimates remained closely
correlated with it.

Figure C2B shows a measure of the predictive accuracy that
comes “for free” with the particle filter: the posterior state after
observation yt−1 is used to predict the current state at time t, and the
likelihood of yt under that predicted current state is therefore a
predictive density. We show the log expected predictive densities,
averaged over trials, for a random sample of 12 simulated agents. In
all cases, the predictive densities were larger for the model in which
decision noise was (correctly) treated as constant. These simulation
results demonstrate that, in principle, a model-selection approach
may be viable when different choices regarding time-varying and
fixed scaling parameters result in different models (i.e., that do not
mimic each other perfectly). No doubt more sophisticated parameter
estimation and model-selection approaches may give better results,
and may be necessary for more complex models and task
environments. We expect this topic will be an important avenue
for future research.

(Appendices continue)
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Figure C2
Alternative Model Specifications for Fitting Data Generated With a Time-Varying Gain
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Note. The agent’s trajectory in the two-dimensional (α, β) space was generated using the same method as described above. The
only difference was that the incoming evidence was multiplied with a gain that switched between values of 1 and 2 periodically
(every 25 trials). (A) Left column: Particle filter estimates for a three-parameter model, where the gain is treated as a scaling
parameter and set to a value of 0.5. Right column: Particle filter estimates for a three-parameter model, where the decision noise is
treated as a scaling parameter and set to a value of 0.5. The solid grey lines show the ground truth values; the solid black lines
show the estimated values (and the fixed values for the scaling parameters). For the η = 0.5 model, the gain estimates were
constrained to the interval λ ∈ [0.01, 5]. Initial values for this parameter were drawn from N ð0.5; 1Þ; the transition distribution
around the current gain values had a standard deviation of 0.2. The particle filter was allowed to explore a wider range of values
for α ∈ [0.01, 50], because higher gains might require higher decision thresholds to capture the data. (B) Log expected predictive
density (over particles), averaged across trials, for 12 simulated agents. Black squares show the sample means.
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