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A B S T R A C T

When deep convolutional neural networks (CNNs) are trained “end-to-end” on raw data, some of the feature
detectors they develop in their early layers resemble the representations found in early visual cortex. This result
has been used to draw parallels between deep learning systems and human visual perception. In this study, we
show that when CNNs are trained end-to-end they learn to classify images based on whatever feature is pre-
dictive of a category within the dataset. This can lead to bizarre results where CNNs learn idiosyncratic features
such as high-frequency noise-like masks. In the extreme case, our results demonstrate image categorisation on
the basis of a single pixel. Such features are extremely unlikely to play any role in human object recognition,
where experiments have repeatedly shown a strong preference for shape. Through a series of empirical studies
with standard high-performance CNNs, we show that these networks do not develop a shape-bias merely through
regularisation methods or more ecologically plausible training regimes. These results raise doubts over the as-
sumption that simply learning end-to-end in standard CNNs leads to the emergence of similar representations to
the human visual system. In the second part of the paper, we show that CNNs are less reliant on these idio-
syncratic features when we forgo end-to-end learning and introduce hard-wired Gabor filters designed to mimic
early visual processing in V1.

1. Introduction

Image recognition in traditional computer vision models proceeds in
two stages. In the first stage, images are mapped onto a set of hand-
crafted features. In the second stage, these features are mapped onto
output categories. Consequently, the success of the image recognition
algorithm strongly depends on identifying an appropriate set of fea-
tures. Part of the appeal of deep learning models, such as convolutional
neural networks (CNNs), has been in removing the first stage and let-
ting the algorithm itself discover useful features. In this setting, image
recognition proceeds “end-to-end”, with raw pixels at one end and
output categories at the other end. This method has been highly suc-
cessful and indeed outperforms traditional models of image recogni-
tion.

What is even more interesting from a neuroscience perspective is
that when one trains these networks on images, the features learnt in
the early layers seem to resemble features such as Gabor filters
(Yosinski, Clune, Bengio, & Lipson, 2014) which effectively extract
edges from objects and are also found in early visual cortex (Petkov &
Kruizinga, 1997). This gives credence to the belief that deep convolu-
tional networks are capturing some fundamental aspects of human

visual perception (Rajalingham et al., 2018). However, a closer in-
spection reveals that, in addition to features that resemble those found
in the visual cortex, early layers also contain a number of features
unlike those observed in the cortex (see Fig. 1).

In this study, we examined (a) whether standard CNNs indeed
perform image recognition in a fundamentally similar manner to
human visual perception, and (b) whether image recognition performed
by CNNs can be brought closer to humans by replacing end-to-end
learning with learning that starts from a feature space similar to that
found in human visual cortex.

We investigate these questions by focusing on a fundamental
property of human image recognition, namely, it is largely a function of
analyzing shape (Biederman, 1987; Hummel, 2013). A wealth of data
from psychological experiments show that the shape of an object plays
a privileged role in object recognition compared to other diagnostic
features such as size, colour, luminance or texture (Mapelli &
Behrmann, 1997; Biederman & Ju, 1988). Experiments have also re-
vealed that shape is extracted early (Leek, Roberts, Oliver, Cristino, &
Pegna, 2016) and automatically (Baker & Kellman, 2018) during
human visual perception. Furthermore, experiments from develop-
mental psychology show that this privileged status of shape starts early
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in life and becomes stronger with age (Landau, Smith, & Jones, 1988).
Note, these studies not only show that the visual system extracts shape
during recognition, they also show that the human visual system prefers
shape over other diagnostic features (e.g. color, texture, etc.) while
performing recognition. In other words, it has a shape-bias.

What is still unsettled, however, is whether our visual system identifies
objects on the basis of shape because we learn through experience that
shape is the most reliable cue to object identification or because there are
innate inductive biases that make shape a privileged cue from the begin-
ning (for discussion see Elman, 2008; Xu, Dewar, & Perfors, 2009).

Similarly there are two possible reasons why CNNs trained in an end-
to-end manner may develop an inductive bias to rely on shape. On the one
hand, shape may be the most diagnostic feature in a trained dataset and
this causes the CNN to learn to rely on shape to perform categorisation –
i.e. CNNs can have a learned shape-bias. On the other hand, a shape-bias
might be the product of the architecture of the CNN itself. For instance, the
multiple layers and pooling operations enable a CNN to combine features
of the stimuli in a hierarchical manner, and this might result in lower
layers representing high-frequency features and higher layers representing
more abstract features, such as shape (Bengio, Courville, & Vincent, 2013).
Indeed, if shape emerges due to this hierarchical composition of features, it
is possible that it is preferred to other features (such as colour or texture)
that do not lend themselves to such a hierarchical composition. On this
second view, CNNs have an innate shape-bias.

Some recent studies have suggested that CNNs rely on learning
shape in order to categorise objects (Kubilius, Bracci, & de Beeck, 2016;
Jozwik, Kriegeskorte, Storrs, & Mur, 2017) and that a shape-bias is
learned as a consequence of training on a particular dataset. For ex-
ample, Ritter, Barrett, Santoro, and Botvinick (2017) observed that
when an Inception model (Szegedy, Vanhoucke, Ioffe, Shlens, &
Wojna, 2016) was pre-trained on ImageNet, the representations in its
hidden layers were more similar for two (novel) objects that overlapped
in shape than for two objects that overlapped in colour. Critically, they
attributed this shape-bias to the statistical properties of the dataset it-
self. In another recent study, Feinman and Lake (2018) show that
standard CNNs can show a shape-bias, just like children studied by

Landau et al. (1988), when they are trained in an end-to-end manner on
a controlled dataset, constructed in such a manner that the category
name correlated with shape more than colour or texture.

Other studies have argued against a learned shape-bias when networks
are trained on standard datasets such as ImageNet. For example, Geirhos
et al. (2018) and Baker, Lu, Erlikhman, and Kellman (2018) manipulated
the texture and shape of images independently and showed that standard
CNNs trained end-to-end on ImageNet are biased towards using local
features, such as texture, compared to the object’s shape. However, in line
with the results of Feinman and Lake (2018), Geirhos et al. (2018) also
showed that CNNs develop a shape-bias when the training set is ma-
nipulated to make shape the most diagnostic feature.

As far as we are aware, however, no one in the machine learning
community has argued that CNNs have (or should have) an innate
shape-bias. That is, a bias to identify objects on the basis of their shape
when both shape and non-shape features are each highly diagnostic of
category membership. In order to tease apart whether any shape-bias is
learned or innate in standard CNNs, we modified the standard CIFAR-
10 dataset to simultaneously contain shape and non-shape features. We
tried several types of non-shape features, such as noise-like masks, and
an extreme version where the non-shape feature consisted of just a
single pixel with a location correlated to the image category (see Fig. 2).
We carried out a sequence of experiments, where we manipulated the
architecture of the CNNs used, the learning algorithm, the regularisa-
tion method and the type of learning regime used to train the CNNs.
Our hypothesis was that, if CNNs have an innate shape-bias due to their
architectural properties, they would rely more on shape compared to
non-shape features. Furthermore, in order to determine whether we
could induce an innate shape-bias we modified the architecture of our
CNNs to include more constraints from the human visual system.

To preview our results, we found that standard CNNs trained on this
modified CIFAR-10 dataset learnt to depend on non-shape features
that are diagnostic of object categories and often failed to learn (or
retain) anything about shape under these conditions. These results
suggest that ‘vanilla’ CNNs do not have an innate shape-bias even
though they share some of the architectural properties of biological

Fig. 1. Example of 96 convolutional kernels learnt by the first convolutional layer from AlexNet, a high-performance convolutional neural network. Each kernel is of
size × ×11 11 3. Learning is performed on images of size × ×224 224 3. Note that, in addition to filters that resemble Gabor filters, a number of other feature
detectors also emerge from end-to-end learning. Figure taken from Krizhevsky et al. (2012).

Fig. 2. Images taken from the CIFAR-10 dataset
and scaled up to 224x224 pixels. (a) Salt-and-pepper
noise-like mask; (b) Uniform additive noise-like
mask; (c) A single diagnostic pixel is inserted in the
image (a dotted red circle is inserted here to illus-
trate the location of the pixel). (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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visual systems and discover some features resembling those found in
their early layers. (Note that this does not imply that CNNs do not en-
code shape information under any circumstance, but that shape does
not seem to be weighted more than other diagnostic features).

We hypothesised that the lack of innate shape-bias in standard CNNs
reflects a lack of innate biological constraints in how they model human
vision. To test this hypothesis, we replaced the first convolutional layer of
a standard CNN with a bank of unmodifiable Gabor filters designed to
mimic simple cells in V1 cortex. We found that although this change
comes at a cost to the network’s overall performance, it made the CNN far
less reliant on non-shape features, such as noise-like masks or single di-
agnostic pixels. We also found that these results were robust across a range
of neurophysiologically relevant parameters for the Gabor filters, showing
that a network using a bank of Gabor filters was, in general, less likely to
rely upon idiosyncratic features present within the dataset. We argue that
including Gabor filters as the first convolutional layer of CNNs makes them
more similar to biological visual systems, becoming less sensitive to non-
spatial details of images that can be predictive of object category.

2. Methods

We modified the CIFAR-10 dataset (which contains 10 classes with
6,000 images per class, see https://www.cs.toronto.edu/~kriz/cifar.
html) so that each image contained not only features that pertain to the
shape (e.g. object outlines) but also features without any shape in-
formation. As independent non-shape features, we used three types of
noise-like masks that were combined with the original image. The salt-
and-peppermask was created by taking the transformed greyscale image
and setting each pixel to either black or white with a probability p. This
probability, p, was fixed for each category but varied between cate-
gories in the range [0.03, 0.06]. The Additive Uniform noise mask was
created by taking the transformed greyscale image and each pixel value
was then independently modified by adding a value sampled from the
Uniform distribution. The width of this distribution was +µ w µ w[ , ]
to this image, where µ [ 50, 50] was the mean that depended on the
category of the image and w2 was the width of the Uniform distribution
which was set to 8 for images of all categories. The single pixelmask was
created by replacing one pixel in each ×224 224 image with a new pixel
value. The location and colour of this pixel was category correlated: the
location of the pixel, x y( , ), was sampled from a 2D Gaussian distribu-
tion with a mean that depended on the category and a standard de-
viation that remained constant across categories. Similarly, each of the
red, green and blue values of the pixel colour, c c c( , , )r g b , were drawn
from a Gaussian distribution with a mean that depended on the cate-
gory and a variance that remained constant across categories. If any
value in a sampled set of x y c c c( , , , , )r g b values fell out of their re-
spective range, that value was re-sampled. Some example images are
shown in the Appendix, Fig. A.9.

We used a method similar to Geirhos et al., 2017 to preprocess
images from the CIFAR-10 dataset where each ×32 32 pixel image was
upscaled to ×224 224 pixels using Lanczos resampling. For the single-
pixel mask, we used 3-channel RGB images (or greyscale for the Gabor-
filter model) while for the salt-and-pepper and additive noise masks, we
transformed images to greyscale. When images were transformed to
greyscale, their contrast was adjusted to 80% by scaling the value of
each pixel using the formula: × + ×v0.8 1281 0.8

2 , where v was the
original value of the pixel in the range [0, 255].

We trained the model on these modified sets of images and tested it
under three conditions. During the ‘Same’ condition, the test set was
modified in exactly the same manner as the training images, i.e., masks for
each category were generated by using the same parameters as those used
during training. In contrast, during the ‘Diff’ condition, the parameters of
the noise masks for each category were swapped with another category.
The premise here was that if the model based its decisions on shape-re-
lated features, then it would ignore the noise mask and the performance

during the ‘Same’ and ‘Diff’ conditions should be similar. On the other
hand, if the model relied on properties of the (non-shape) mask, then it’s
performance would be worse in the ‘Diff’ condition compared to the
‘Same’ condition. Finally, we used a third, ‘NoPix’ condition, where the
mask was entirely absent during testing, to estimate the extent to which
the network relied on features of the noise mask. In this condition, we
presented the network with a version of the image without any mask, with
the premise that the difference between the performance in the ‘Same’ and
‘NoPix’ conditions should quantify the relative extent to which the net-
work relied on shape and non-shape features.

Simulations were carried out using either a 16-layer VGG network
(Simonyan & Zisserman, 2014) or a 101-layer ResNet network provided
by the torchvision package of PyTorch and Keras with Tensor-
Flow. These networks were either trained from scratch on the modified
dataset or were first pre-trained on ImageNet and then trained on the
modified dataset. When the networks were pre-trained, we replaced the
fully-connected layer(s) of the VGG/Resnet pre-trained model such that
the last fully-connected layer had 10 output units (corresponding to the 10
categories of CIFAR-10). Since the results remain qualitatively the same,
we report the results for the networks pre-trained on ImageNet. We tried
a number of different optimization algorithms, including RMSProp, SGD
and Adam (Kingma & Ba, 2014). Results again remained qualitatively the
same. We started with a learning rate of 10−3 when training the network
from scratch and used a learning rate of 10−5 when fine-tuning a pre-
trained network (or 10−4 throughout with the Gabor-filter model). In all
cases, we used cross-entropy as the loss function. The input to both types
of networks was a 3-channel RGB image. For greyscale images, all three
channels were set to the same value.

3. Results

3.1. Experiments 1–3

We conducted three experiments, one for each type of noise-like
mask described above. The results are shown in Fig. 3. During all three
experiments, we observed that both networks classify images with a
nearly perfect accuracy during the ‘Same’ noise condition. For both the
salt-and-pepper and single pixel experiments, performance in the ‘Diff’
condition was either at or below chance. Recall that the ‘Diff’ condition
swaps the masks between categories. Therefore, a below chance per-
formance reflects that the network is entirely relying on the mask to
make category predictions, systematically predicting a different cate-
gory to the original image category in CIFAR-10. These results are
confirmed by the ‘NoPix’ condition: when the mask information is re-
moved, the network struggles to make a prediction based on informa-
tion within an image, with performance dropping to near-chance levels.

For the single pixel experiment, accuracy in the ‘NoPix’ condition
was somewhat better for ResNet-101 than VGG-16, indicating that in
this case the network may be using some other features of the image
beside the noise-like mask. However, even in this case, there was a
significant drop in performance compared to the ‘Same’ condition.

The additive noise experiment showed an intriguing behaviour: when
the noise-like mask was completely removed (‘NoPix’ condition) the model
performed worse than when the images contained a mask from a different
category (‘Diff’ condition). In other words, removing the mask made the
image less informative for the model, not only compared to images with
the correct category-correlated (‘Same’) mask, but also compared to
images with the incorrect (‘Diff’) mask – the model appears to rely on the
presence of the noise-like mask to make an inference.

Furthermore, we obtained the same pattern of results irrespective of
the type of regularisation used (we tried several well-known regularisa-
tion methods including Batch Normalization, Weight Decay and Dropout).
These results clearly indicate that the model learnt to rely on features of
the noise-like mask, rather than shape-related information present in the
images. Even in the extreme case, where only one pixel amongst 50,176
was diagnostic of the category, the model preferred to classify based on
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this feature over other shape-related features present in each image.
Fig. 4 shows four example images that have been modified in the manner
described above and are classified differently based on the mask super-
imposed on these images. Note that it is difficult for humans to distin-
guish the various salt-and-pepper and uniform noise-like masks that the
CNNs use to make these image classifications.

The above results were obtained for networks that were pre-trained
on ImageNet. Since these images are in the format ×224 224 pixels, we
upscaled all CIFAR-10 images to this size. A very similar pattern of
results is obtained if the images are left unscaled (though in this case
the networks had to be trained from scratch on the modified dataset). In
fact, the upscaled images constitute a much stronger test, as the net-
work needs to learn a single predictive pixel amongst 50,176 pixels
( ×224 224) instead of amongst 1,024 pixels ( ×32 32). Results for con-
ducting the above experiments on unscaled images of size ×32 32 are
shown in Appendix B, Fig. B.10.

3.2. Experiments 4 & 5

One possible reason why humans prefer to rely on shape-related
features to categorise objects while standard CNNs do not, is that hu-
mans are guided by past experience when performing new categorisa-
tion tasks. So when a human sees an object with superimposed noise,

they rely on shape-based information, paying less attention to non-
shape related features such as the masks in the above images. We
conducted two further experiments to test whether networks similarly
generalise from concurrent and past experience. Both these experiments
were conducted on the single pixel mask as this seems to be the most
striking finding and we get the clearest pattern of results with this case.

In Experiment 4, we divided the training set into two subsets. The first
subset (‘with pix’) contained three randomly chosen categories from
CIFAR-10 and, as described above, contained a category-correlated pixel
in all images of these categories. The second subset (‘unaltered’) contained
the remaining seven categories from CIFAR-10 which were left unaltered
– i.e. we did not add the category-correlated pixel to images of this subset.
We trained a VGG-16 network on all ten categories concurrently. We were
interested in finding out whether the network generalised from one subset
to another and started using the features used to categorise images in the
‘unaltered’ subset to categorise images in the ‘with pix’ subset. All other
details of the experiment remain the same as in Experiment 1.

The results from this experiment are shown in Fig. 5a. The model
learnt to predict the images in the ‘unaltered’ subset with nearly 90% ac-
curacy. However the performance on the ‘with pix’ subset still completely
depended on the location and colour of the added pixel: accuracy was
nearly 100% when test images contained the pixel in the same location, but
dropped below chance when this pixel was removed. Thus, the network

Fig. 3. Accuracy on test images under
the three types of noise-like masks
shown in Fig. 2. Training images con-
tain (a) salt-and-pepper noise, or (b)
additive uniform noise, or (c) just one
diagnostic pixel. Each experiment
shows test performance under three
conditions – ‘Same’: the noise-like mask
has the same properties for testing and
training images of each category; ‘Diff’:
the properties of the mask during
testing are swapped with another cate-
gory from training; ‘NoPix’: No mask is
applied. The dashed (red) line indicates
chance performance and error bars
show 95% confidence intervals. Light
and dark gray bars show accuracies on

VGG-16 and ResNet-101 respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Four images from the CIFAR-10 test-set that
have been modified by adding a noise-like mask.
Each image contains a different mask. However, all
images in a column contain a mask with shared
statistical properties. For example, all images in the
first column contain salt-and-pepper masks drawn
from the same distribution (see Methods) while
images in the second column draw masks from a
different distribution. Consequently the network
classifies each image in the first column as an
‘Airplane’, while it classifies each image in the
second column as a ‘Horse’. Similarly, the two col-
umns in the middle contain images with additive
uniform noise masks drawn from two different dis-
tributions while the two columns on the right con-
tain images with a single predictive pixel (nearly
invisible to the naked eye).
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did not seem to generalise the features (concurrently) learnt in the ‘un-
altered’ categories to the categories containing the diagnostic pixel.

In Experiment 5 we tested what happens when the network is first
trained on images that did not contain such a pixel (a ‘before’ phase)
followed by a second (‘after’) phase in which such a pixel was inserted
in the training set. In the first phase, we trained a VGG-16 network on
an unaltered CIFAR-10 training set. Once the network had learnt this
task, we trained it on the modified set of images in a second phase,
introducing a predictive pixel in each category. So all that changed
between the ‘before’ and ‘after’ phases was the insertion of a single
category-correlated pixel into each image.

We observed that, instead of relying on past experience with these
images, the model learnt to completely rely on the predictive pixel to per-
form categorisation – accuracy dropped from nearly 90% during the ‘before’
phase to 0% during the ‘after’ phase in the ‘Diff’ condition (Fig. 5b). Cru-
cially, the model completely forgot about how to perform categorisation
when the predictive pixel was removed – accuracy was close to chance in
the ‘NoPix’ condition during the ‘after’ phase. Thus learning about the di-
agnostic feature seemed to be accompanied by unlearning previously learnt
representations. This ‘catastrophic forgetting‘ is a well-known problem in
neural networks (McCloskey & Cohen, 1989) and contrasts with how hu-
mans transfer their knowledge from one task to another. Some recent so-
lutions to catastrophic learning in neural networks have been suggested,
such as Elastic Weight Consolidation (Kirkpatrick et al., 2017) but it re-
mains to be seen whether this can overcome some of these problems.

3.3. Experiment 6

It could be argued that the diagnostic non-shape features that we in-
serted provide a very strong diagnostic signal. For example, in the single-
pixel condition, each image contains the pixel in roughly the same location.
Since it is unclear to what extent large datasets such as ImageNet or
CIFAR-10 contain such idiosyncratic (but reliable) features, we decided to
examine how the behaviour of the network changes when only a subset of

Fig. 5. Accuracy for (a) two subsets: an ‘unaltered’
subset where no noise-like mask was inserted in
training images and a ‘with pix’ subset where a
single diagnostic pixel was inserted, and (b) for two
phases: a ‘before’ phase, where a pre-trained VGG
network was trained on images without any noise
masks and tested on the three conditions, and an
‘after’ phase, where the model from the before phase
was then trained on images with a single diagnostic
pixel.

Fig. 6. Accuracy of the model on images containing no mask, as a function of
the fraction of training images containing a diagnostic pixel. The solid (blue)
and dashed (green) lines plot this relation for a network trained without and
with weight-decay, respectively. The dashed (red) line at the bottom shows
chance performance. The dotted (black) line at the top shows performance of a
network trained on images without any noise mask. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Parameters used for constructing sets of Gabor filters.

Parameter Symbol Values

Orientation {0, , , , , , , }8 4
3
8 2

5
8

3
4

7
8

radians

Phase shift {0, , , }2
3
2

radians

Aspect ratio {0.5, 1}
Wavelength varied: 3, 4, 5, 6, 7, 8 pixels cycle/
Spatial bandwidth b varied: 1, 1.4, 1.8 octaves

Fig. 7. Accuracy on test images under the three types of noise-like masks. The shading of the bars indicates the three filter bandwidths tested. The dotted (grey) line
indicates performance on the standard CIFAR-10 images, the dashed (red) line indicates chance performance and error bars show the 95% confidence intervals. In all
cases, the wavelength of the sinusoid component was fixed at = 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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images contain a diagnostic non-shape feature. We again restricted this
experiment to the case of a single diagnostic pixel as this was the most
striking finding in the above experiments. We also restricted testing to the
VGG-16 network, as very similar results were found for VGG-16 and
ResNet-101 above. The location and colour of this pixel were fixed across
all images of a category, but we introduced stochasticity in the presence of
this pixel within a training image. Fig. 6 shows the change in accuracy for
the ‘NoPix’ condition with a decrease in the probability with which a pixel
is present in a training image. We specifically focus on the ‘NoPix’ condi-
tion as the accuracy on this condition is inversely correlated with how
much the network relies on this pixel to predict the output category.

It is clear from this figure that the network continues to rely on this
informative pixel, even when it is not present in all the images. For ex-
ample, the network’s performance drops from around 90% when it is
trained on the unmodified CIFAR-10 dataset to around 70% when it is
trained on a modified dataset that contained the pixel in 90% of the
images. As we decreased the proportion of images containing the pixel, the
performance increased, but still did not achieve the level reached under
the unmodified CIFAR-10 training condition when only 70% of images
contained such a pixel. The increase in performance with decrease in the
proportion of images containing the diagnostic pixel is consistent with the
hypothesis that the learning algorithm selects the feature based on the
predictive power of the feature; as the single pixel becomes less predictive,
the network starts relying on other features to choose the output category.
Lastly, we also observed that L2 regularisation made the performance of
the network worse on the original images when a diagnostic pixel was
inserted in only a fraction of the images. While L2 regularisation should
help the network learn a more general solution, in this case it led to the
opposite effect.

4. A biologically plausible feature space

In this section, we tested the hypothesis that adding a biological con-
straint may make the network less reliant on the noise-like masks that are
diagnostic of output categories of the stimuli. To do so, we replaced the
first convolutional layer of VGG-16with unmodifiable Gabor filters, rather
than allow the model to form its own feature space through fully end-to-
end training. Gabor filters have been shown to be a good model of the
simple cell receptive fields found in the early visual cortex of cats (Jones &
Palmer, 1987) and primates (Petkov & Kruizinga, 1997) and are regarded
as the standard model of simple cells amongst neuroscientists.

There is good reason to believe that filtering an image through a
bank of Gabor filters will reduce high-frequency noise present within
these images. Convolving an image with a Gabor kernel filters the
image based on the shape of the kernel. Thus, much like simple cells,
Gabor kernels act like oriented edge or bar detectors for particular
spatial frequencies, filtering noisy information outside their bandwidth.

4.1. Methods

The Gabor function is an oriented sinusoidal grating convolved with
a Gaussian envelope:

=
+

+g x y
x y

i x( , ) exp
2

exp 2
, , , ,

2 2 2

2 (1)

with the following definitions:

= + = +x x y y x ycos sin sin cos (2)

where x and y specify the position of a light impulse in the visual field
(Petkov & Kruizinga, 1997).

Rather than specify the width of the Gaussian component in pixels, it is
more natural to set the bandwidth, b, which describes the number of cycles
of the sinusoid within the Gaussian envelope. The standard deviation of
the Gaussian factor, , is therefore set indirectly through b, and :

= +ln2
2

· 2 1
2 1

b

b (3)

Throughout each simulation where Gabor filters were used, the first
convolutional layer of VGG-16 was replaced with a fixed bank of Gabor
filters designed to model the early primate visual cortex and match the
number of output channels (64) defined in the original CNN. Each such
bank had eight orientations, , four phases, , and two aspect ratios, ,
(defining the ellipticity of the filter) while the wavelength, , and
bandwidth, b, were systematically varied. The corresponding values are
given in Table 1. Additionally, the kernels were set to be ×31 31 pixels,
with an odd number chosen in order to centre the kernels on each
image pixel. We chose a fairly large size for the Gabor filters (note this
is distinct from the spatial scale, ) to allow the Gaussian envelope to
decay to near-zero at the edges and thus avoid any truncation artefacts
when computing the convolutions. The filters were plotted to visually
confirm that they had largely decayed to zero near the borders of the
frame, avoiding boundary effects (see Fig. C.11 in the Appendix).

As with the previous experiments, CIFAR-10 images were manipu-
lated by adding one of the following types of noise: Salt and Pepper,
Additive or Single pixel but remained in their original size of ×32 32
pixels. All images were converted to greyscale and fed into the modified
network under the same training and test conditions described previously.

4.2. Results

To test the hypothesis that the reliance of the network on the noise
masks was due to high spatial frequency information contained in these
images, we systematically varied the two key parameters of the Gabor
filters most pertinent to this idea: and b. The wavelength of the si-
nusoidal component, was varied in the range [3. .8] pixels/cycle while
the bandwidth of the Gaussian component, b, was chosen from

Fig. 8. Accuracy on test images under the three types of noise-like masks plotted against varying wavelength, . In addition to the standard noise conditions, ‘None’
indicates the original images (no noise mask) were used for training and testing to provide a performance baseline. The shaded bands around each line represent the
95% confidence intervals, the horizontal (red) dashed line represents chance performance and the vertical (yellow) dotted line represents the point in parameter
space corresponding to Fig. 7. In all cases, the median bandwidth was used, =b 1.4 octaves, with very similar trends exhibited at the other bandwidths tested (see Fig.
C.12). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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{1.0, 1.4, 1.8} octaves in accordance with measurements from macaque
visual cortex (Petkov & Kruizinga, 1997), with automatically calcu-
lated for each combination of parameters according to Eq. 3. For each
experimental condition, five realisations were run with different ran-
domised initial conditions.

An illustrative example of the familiar performance bar chart is
shown for direct comparison to earlier results in Fig. 7 for = 5 and

=b {1, 1.4, 1.8}. The trends in network performance for each test con-
dition are plotted against in Fig. 8. The performance was found to be
largely insensitive to variations in b for this range but the full trends are
included in the Appendix (Figs. C.12 and C.13).

It is evident from the largely flat performance profiles across the test
conditions in Fig. 7 that the network is no longer reliant upon the noise-
like masks for correctly classifying the CIFAR-10 images (albeit with
some lingering difficulty with additive noise). In all cases, performance on
the ‘Diff’ condition is greater than zero and performance on the ‘NoPix’
condition is greater than chance (10%). This trend can also be seen to hold
across a biologically relevant range of variation in bandwidth.

Fig. 8 shows that although performance gradually declines with
increasing (as the filters represent decreasing spatial frequency in-
formation), the effect of the noise-like masks has been eliminated by 4
or 5 pixels/cycle (demonstrated by the convergence of performance
curves in Fig. 8a and c) and is robust throughout a wide range of the
parameter space. The additive noise condition still affects the network
performance but to a lesser extent than the CNNs that were trained end-
to-end, with performance well above chance throughout the parameter
range under all conditions.

5. Discussion & conclusions

In a series of simulations we found that standard CNNs do not show a
shape-bias when trained on images that include both shape and non-shape
features diagnostic of object category. That is, standard CNNs do not have
an innate shape-bias. Instead, the models learnt to categorise objects on
the basis of non-shape features that were strongly correlated with the
output class, even when the features were as small as a single pixel.

Of course, we engineered our dataset to contain diagnostic non-shape
features, but it is well-known that popular datasets contain various biases
due to the different conditions and motivations for their construction
(Torralba & Efros, 2011). As such, biases like the ones we engineered may
well be present in these datasets, which standard networks may be picking
up on. This hypothesis is in line with a recent study conducted by Jo and
Bengio (2017) who observed that standard CNNs have a tendency to learn
the surface statistical properties of images as opposed to high-level ab-
stractions. Indeed, this adds to a body of evidence showing that standard
CNNs trained on ImageNet categorize images on the basis of texture rather
than shape (Geirhos et al., 2018).

This tendency for learning surface statistical properties may help
explain the vulnerability of CNNs to adversarial attacks. It is well
known that CNNs show several idiosyncratic behaviours such as being
confounded by fooling images (Nguyen, Yosinski, & Clune, 2015) or
being overly sensitive to colour (Hosseini, Xiao, Jaiswal, & Poovendran,
2017), noise (Geirhos et al., 2017) or even single pixels in images (Su,
Vargas, & Kouichi, 2017). Ilyas et al. (2019) have recently argued that
many adversarial attacks can be attributed to learning “non-robust fea-
tures” present within datasets – that is, features that are predictive of an
image category in a dataset but highly sensitive to small perturbations
of the image and hence incomprehensible to human beings. In contrast,
a high-level feature, such as shape, is robust to small deformations and
the human preference for relying on shape makes them less vulnerable
to small, high-frequency changes within images.

To be clear, our results do not show that CNNs cannot rely on shape
if it is the only or primary diagnostic feature. Indeed, if the most di-
agnostic feature in our dataset was shape (rather than the noise-like
masks), then we expect CNNs would learn to rely on shape, consistent
with the work by Feinman and Lake (2018). However the hypothesis we

set out to test is not whether networks can learn to identify objects on
the basis of shape, but rather, whether CNNs have an innate shape-bias
– that is, whether or not CNNs prefer to rely on shape in the presence of
other diagnostic features. Our results show that this is not the case.

We also found that pre-processing images through a bank of Gabor
filters and mapping them to a more biologically plausible feature space
can make CNNs less sensitive to some types of non-shape diagnostic
signals. Of course, we do not want to suggest that preprocessing images
in this manner ensures that CNNs rely on shape to perform classifica-
tion, or start exhibiting a shape-bias. Clearly, if one designed a pre-
dictive feature with a spatial extent that can pass through the bank of
Gabor filters, the network would end up using it to perform categor-
isation, instead of relying on the object’s shape. What we show here is
that if one replaces end-to-end learning with learning that takes as its
input a biologically plausible feature space, namely a bank of Gabor
filters, it makes the network more robust to a range of idiosyncratic
non-shape features. We chose the parameters of these Gabor filters
based on neurophysiological data and found that these results hold, not
just for particular values of parameters but for an entire range of
parameters. So the crucial element does not seem to be learning the
correct values of these parameters but having the correct form of filters.

As noted, this robustness to perturbations across the three test manip-
ulations comes at the cost of a decrease in overall performance, e.g.
dropping from the standard result of around 95% accuracy (with the un-
modified CIFAR-10 dataset) to around 70% when Gabor filters are in-
cluded in VGG-16 (see ‘None’ for 4 in Fig. 8). This decrease in per-
formance may be partly due to discarded colour information and the
restriction to individual wavelengths and bandwidths (rather than a full
range) for the sake of systematic evaluation. However, the Gabor kernels
themselves filter out an additional source of information, namely un-
structured, spatially high-frequency features, further lowering performance.
From a machine learning perspective the reduction in accuracy is a pro-
blem. However, from a psychological perspective the resultant flat per-
formance profile gained by these convolutional constraints suggests that
the excellent performance of existing CNNs relies on extracting such high-
frequency features that humans ignore (or are insensitive to). Accordingly,
we argue that this accuracy drop demonstrates the fragility and biological
implausibility of solutions found by end-to-end trained models, rather than
an inadequacy of adding the Gabor filters as a front-end to CNNs.

In this study, we imposed a biological constraint by replacing end-to-
end learning with a biologically motivated feature space. Another possible
approach is to preserve end-to-end learning while changing the archi-
tecture of the CNN in such a way that a similar feature space of Gabor
filters is learned. Recently, Lindsey, Ocko, Ganguli, and Deny (2019) have
shown that imposing such architectural constraints, such as a retinal
“bottleneck”, can lead to the emergence of antagonistic centre-surround
fields found in retinal ganglion cells, followed by Gabor-like receptive
fields. It remains to be seen whether such a constraint could be used to
overcome vulnerabilities of standard CNNs to non-shape features present
within datasets. However, even if this approach proves to be successful, it
is important to note that neurophysiological research shows that oriented
receptive fields in V1 are innate rather than learnt through experience
(Chapman & Stryker, 1993; Wiesel & Hubel, 1974).

Rather than learning Gabor filters end-to-end in response to image da-
tasets, from a biological perspective, the more appropriate question might
be to explain how these filters develop in response to evolutionary pres-
sures. From an engineering perspective the challenge now is to advance this
new direction, closing the performance gap while retaining the robustness.
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Appendix A. Example Images

Appendix B. Results for ×32 32 images

Fig. B.10. Accuracy of a VGG-16 convolutional neural network on test images of size ×32 32 under (a) salt-and-pepper, (b) additive uniform, and (c) single pixel noise-
like masks. The ‘Same’, ‘Diff’ and ‘NoPix’ conditions are the same as in Fig. 3. We modified the VGG-16 network from the original (Simonyan & Zisserman, 2014) network
so that the first layer consists of three channels each of size ×32 32. Instead of using a network that is pre-trained on ImageNet (which contains images in the ×224 224
format), we trained the network from scratch on the modified datasets containing ×32 32 images. Light gray bars in (a) show noise-like masks generated in the same
manner as for the ×224 224 images above. Since different categories differ in the rate of the salt-and-pepper noise (see Methods above), this method of generating noise
leads to a much weaker diagnostic signal for ×32 32 pixel images. When the strength of this diagnostic signal is increased, the same pattern of results reappears (dark gray
bars). For (b) & (c) the amount and type of noise remains as used for the ×224 224 pixels images and described in the Methods section above.

Fig. A.9. Examples of images used for training and
testing. The columns show the condition under
which the image was used and the rows show the
type of noise-like mask applied. These masks are,
respectively, (row 1) salt-and-pepper noise with a
fixed mask, (row 2) salt-and-pepper noise with a
variable mask, (row 3) additive uniform noise with a
fixed mask, (row 4) additive uniform noise with a
variable mask, (row 5) single diagnostic pixel, with
fixed location and colour and (row 6) single diag-
nostic pixel with variable location and colour. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web
version of this article.)
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Appendix C. Gabor filters

.

Fig. C.11. Illustrative set of Gabor filters used in the first convolutional layer of the network with = 5 and =b 1.4. Orientation (θ) varies from 0 to 7
8 across each

row, while down each column ψ varies from 0 to 3
4 and varies from 1 to 0.5. The Gabor kernels are displayed on odd rows while the results of their convolution

with an example image from the training set (Fig. 2) are shown on even rows.
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Fig. C.12. Accuracy on test images under the three types of noise-like masks plotted against varying wavelength for each noise mask (columns) and three
bandwidths, b (rows). In addition to the standard noise conditions, ‘None’ indicates the original images (no noise mask) were used for training and testing to provide a
performance baseline. The shaded bands around each line represent the 95% confidence intervals, the horizontal (red) dashed line represents chance performance
and the vertical (yellow) dotted line represents the point in parameter space corresponding to Fig. 7. The middle row ( =b 1.4) corresponds exactly to Fig. 8 but is
reproduced here for direct comparison to the performance curves obtained at other bandwidths. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. C.13. Accuracy on test images under the three types of noise-like masks plotted against varying bandwidth, b for each mask (columns) and six wavelengths, (rows).
In addition to the standard noise conditions, ‘None’ indicates the original images (no mask) were used for training and testing to provide a performance baseline. The shaded
bands around each line represent the 95% confidence intervals, the horizontal (red) dashed line represents chance performance and the vertical (yellow) dotted line
represents the point in parameter space corresponding to Fig. 8 ( =b 1.4). These are the same data used in Fig. C.12 but transposed in order to explicitly see the performance
trends with varying bandwidth. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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